AIMMX: Artificial Intelligence Model Metadata Extractor

Jason Tsay Alan Braz Martin Hirzel
jason.tsay@ibm.com alanbraz@br.ibm.com Avraham Shinnar
IBM Research IBM Research Todd Mummert

Yorktown Heights, New York, USA

ABSTRACT

Despite all of the power that machine learning and artificial intelli-
gence (AI) models bring to applications, much of AI development
is currently a fairly ad hoc process. Software engineering and Al
development share many of the same languages and tools, but Al de-
velopment as an engineering practice is still in early stages. Mining
software repositories of Al models enables insight into the current
state of Al development. However, much of the relevant metadata
around models are not easily extractable directly from repositories
and require deduction or domain knowledge. This paper presents a
library called AIMMX that enables simplified AI Model Metadata
eXtraction from software repositories. The extractors have five
modules for extracting Al model-specific metadata: model name,
associated datasets, references, Al frameworks used, and model
domain. We evaluated AIMMX against 7,998 open-source models
from three sources: model zoos, arXiv Al papers, and state-of-the-
art Al papers. Our platform extracted metadata with 87% precision
and 83% recall. As preliminary examples of how AI model meta-
data extraction enables studies and tools to advance engineering
support for Al development, this paper presents an exploratory
analysis for data and method reproducibility over the models in the
evaluation dataset and a catalog tool for discovering and managing
models. Our analysis suggests that while data reproducibility may
be relatively poor with 42% of models in our sample citing their
datasets, method reproducibility is more common at 72% of models
in our sample, particularly state-of-the-art models. Our collected
models are searchable in a catalog that uses existing metadata to
enable advanced discovery features for efficiently finding models.

KEYWORDS

Artificial Intelligence, Machine Learning, Model Mining, Model
Metadata, Model Catalog, Metadata Extraction

ACM Reference Format:
Jason Tsay, Alan Braz, Martin Hirzel, Avraham Shinnar, and Todd Mummert.
2020. AIMMX: Artificial Intelligence Model Metadata Extractor. In 17th

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7517-7/20/05....$15.00
https://doi.org/10.1145/3379597.3387448

S3o0 Paulo, Brazil

hirzel@us.ibm.com
shinnar@us.ibm.com
mummert@us.ibm.com
IBM Research
Yorktown Heights, New York, USA

International Conference on Mining Software Repositories (MSR "20), October
5-6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3379597.3387448

1 INTRODUCTION

The combination of sufficient hardware resources, the availability
of large amounts of data, and innovations in artificial intelligence
(AI) models has brought about a renaissance in Al research and
practice. For this paper, we define an Al model as all the software
and data artifacts needed to define the statistical model for a given
task, train the weights of the statistical model, and/or deploy the
trained model weights for prediction in a service or application.
Our definition of model includes both traditional machine learning
(ML) and deep learning models. Al as an engineering practice is
still in its early stages with often unpredictable and costly results
(both in terms of time and quality) [18] which are often difficult to
reproduce [17]. The sheer amount of possible Al approaches and
algorithms [38] and recent increase in released Al frameworks [9]
result in a large variety of Al models and representations. The
sheer variety and lack of standardization results in models that are
difficult to interact with and reason across at scale. For example,
even if two models use the same Al framework, they may be in very
different domains such as Vision or Natural Language Processing
(NLP) or use different algorithms or datasets. Even when a model’s
code is available, often using or understanding this model requires
much manual effort, sometimes even requiring reading associated
papers. This manual effort often precludes using these models at
scale. We propose that extracting standardized model metadata
will reduce this manual effort and even enable programmatically
analyzing or interacting with a large quantity of models.

One avenue for standardization is that software and Al develop-
ment share many of the same languages and tools, such as version
control systems. Existing software repository tools and services,
such as GitHub, are popular with Al developers to store model
definition code and development artifacts such as configurations
and training logs. In fact, software repositories are popular methods
of disseminating examples of models for these frameworks, such as
model zoos that collect models for a given framework. Enterprise Al
systems also commonly use versioning systems meant for software,
to store both AI and non-Al components [7]. One possibility is that
existing software repository mining techniques such as software
analytics techniques [22] or bug prediction techniques [15, 25] can
be adapted or reused for Al development. However, developing (and
mining) Al models presents additional challenges over traditional

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

software engineering. Al development often requires managing
many model-specific components that are entangled [7, 29] such
as code, data, preprocessing, and hyperparameters. The tools that
support software development, such as version control systems,
tend to not support representing these entangled components. We
expect that mining the repositories of Al models will give insight
into Al development, but often information about these compo-
nents is not directly accessible. For example, an image classification
model often contains code that defines the model but information
such as the dataset used, papers referred to, and even the domain
of the model is absent or hidden in documentation.

We present a library called AIMMX (AI Model Metadata eXtrac-
tor) for simplified and standardized extraction of AI model-specific
metadata from software repositories. The extractors take exist-
ing software repositories which contain Al models and aggregate
data from multiple sources, such as documentation, Python code,
model definition files, etc. Our extractors aggregate this data for Al
model-specific metadata. Aggregation also enables further infer-
ring additional model-specific metadata that is not easily available
directly from software repositories. The extraction library contains
five main modules to extract model-specific metadata: model name,
references, dataset, Al frameworks, and model domain. The model
domain inference module in particular uses machine learning to
automatically infer a model’s domain such as Computer Vision or
Natural Language Processing (NLP).

In contrast to other model metadata efforts such as ONNX [5],
PMML [16], and PFA [27] that focus on defining the model’s low-
level computational graph, our metadata extraction is more con-
cerned with higher-level questions such as the domain or which
datasets were used to train a given model or how to use a given
model rather than model definition specifics such as the topology
of the neural network the model uses. We evaluated our extractors
by collecting 7,998 models from public software repositories from
three sources: 1) 284 “model zoo” example repositories, 2) 3,409
repositories extracted from Al-related papers, and 3) 4,324 reposi-
tories associated with state-of-the-art Al models. Using a subset of
this dataset, we created test sets and evaluations for each of our five
extraction modules as mentioned above as well as a holistic evalu-
ation of the entire system. The automatically extracted metadata
have an average precision of 87% and recall of 83%. The evalua-
tion dataset is available as part of the replication package. After
extraction, the metadata is ready for consumption in both machine-
readable and human-readable states. See Figure 1 for an overview
of the extraction system, dataset collected, and preliminary usage
of the extracted metadata.

Extracting metadata in a standardized way is useful for further-
ing engineering support for Al development. Metadata enables
large-scale analysis and tools in research and practice that man-
age multiple varying models. We perform an exploratory analysis
across our evaluation dataset for the reproducibility of AI models.
Reproducibility in Al papers [17] and Jupyter Notebooks [26] tends
to be relatively poor, due to a lack of documentation over method
selection, datasets used, or experiments ran. We quantitatively ex-
amine our metadata dataset of 7,998 models for signals of both data
(datasets used for an Al model) and method (algorithms and design
decisions for an AI model) reproducibility [17]. Our exploratory
analysis found that data reproducibility tends to be relatively low

Tsay et al.

Public Al Model Model Metadata
Repositories Extractors (AIMMX)
Model Zoos Model Name p— —
(284) andardize escriptive
References Extracted Analysis

Model Catalog
Tool

- — Datasets > Model
(3,409) Al Frameworks (7,998)
Domain Inference

SoTA Papers
(4,324) Other

Figure 1: Overview of Extractor System.

at 42% of models in our sample having extractable information
about datasets used. Method reproducibility, proxied by extracted
references, is higher than data reproducibility at 72% of models in
our sample, with state-of-the-art models being particularly high at
92%. As an example of a tool that leverages extracted metadata, we
also describe an implementation of a searchable catalog that uses
metadata to manage discovering and evaluating collected models.
The system is scalable for cataloging thousands of models, allowing
model producers to add their own models in a manner that imposes
minimal burden due to AIMMX enabling automated metadata ex-
traction. In contrast, other model management systems such as
ModelDB [36] provide these features but require that model pro-
ducers instrument their code. Using AIMMX’s extracted metadata
in a catalog provides automatic connections between code, datasets,
and references which is similar to the manual connections in the
Papers With Code website [2]. These connections may also enable
automated training or deployment in future tools.
This paper makes the following contributions:

e Tool for extracting AI model-specific metadata from soft-
ware repositories with currently five extraction modules
(Section 2).

e Evaluation of our tools against a dataset of 7,998 models
(Section 3). This AI model metadata dataset is also available
as part of a replication package.

o Preliminary usage of extracted metadata via an exploratory
analysis of the data and method reproducibility of AI mod-
els in our dataset and implementation of a cataloging tool
(Section 4).

2 AUTOMATED MODEL METADATA
EXTRACTION

The core of AIMMX is a Python library that reads software reposi-
tories, specifically from GitHub [4], and extracts Al model-related
information into standardized model metadata in the JSON format
that is machine and human readable. This library is open source
and publicly available for use!. AIMMX is meant to be simple to
use: once it is instantiated with a GitHub API key, then the user
calls a function with a desired GitHub URL which then runs the
extractors and returns the extracted metadata. The advantages of
choosing to use software repositories and GitHub specifically are
that they are already in common use for Al development [7]. For
example, most major Al-related frameworks such as TensorFlow,

!https://github.com/ibm/aimmx

AIMMX: Artificial Intelligence Model Metadata Extractor

PyTorch, and Caffe2 have public model zoos, collections of example
or demonstration models, hosted on GitHub. Another advantage is
that software repositories often document more than just code, for
example, there is a culture of rich documentation through README
files that are automatically displayed on GitHub repository pages.
Depending on the community, data scientists will often spend extra
effort to ensure documentation is updated [33]. GitHub also has a
rich Application Programming Interface (API) [14] that enables our
tools to integrate with it in a straightforward manner. The extractor
supports three forms of URLs: full repositories, subfolders within
a repository, and individual files in repositories. For example, the
TensorFlow model zoo contains multiple folders, each containing
an example model whereas the Keras model zoo contains a folder
with multiple Python files, each containing an example model. From
the GitHub API, information such as the repository name, descrip-
tion, tags (topics in GitHub), authors (contributors in GitHub), open
source license, primary programming language, date of last code
commit, number of stargazers for the repository (a popularity met-
ric similar to Likes in Facebook or Twitter [12]), and list of files are
directly extractable. Then, the extractor optionally mines additional
information depending on whether the repository contains certain
files such as the README file, Python code, Python-specific con-
figuration files, and certain types of ML or Al framework-related
binary or configuration files. For example, Caffe2 commonly de-
scribes the expected dimensions for input data in value_info.json. Our
tools extract this information and encode it in the metadata as an
embedded JSON schema in input_data_schema. Specific binary files
are automatically identified and placed into the trained_model subob-
ject based on the file extension (e.g. . pb for Caffe2, . h5 for Keras,
.onnx for ONNX), and Dockerfile for containerized models.

An issue with using version control systems meant for traditional
software is that AI model-specific metadata is not directly avail-
able through repositories or associated code or configuration files.
However, by analyzing the aggregated metadata, model-specific
metadata can be extracted or inferred. This metadata is then able to
augment the aggregated metadata that is more directly extractable
from software repositories, code, and configuration files. The cur-
rent version of the extractors contains five such modules: model
name, references, associated datasets, Al frameworks used, and
model domain inference.

2.1 Model Name Extraction

The first main module attempts to extract a more descriptive name
for a given model from available metadata. In many cases, the most
obvious name, the repository name, is insufficient or suboptimal.
Models often exist as part of subfolders or individual files within
repositories, especially in “model zoo” collections which often can-
not directly use the repository name. Also, the repository name
is often a nickname or a non-obvious abbreviation. For example,
a repository may be named “hip-mdp-public” but a more descrip-
tive name would be “Robust and Efficient Transfer Learning with
Hidden Parameter Markov Decision Processes.” To extract more de-
scriptive names, this module uses a rule-based approach to analyze
documentation for potential names. Specifically, the documenta-
tion analyzed depends on the repository and what is available. If
the model is in a repository subfolder, the subfolder’s README

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

file is used if available. If the model is a specific Python file, the
docstring, documentation comments at the top of the file, is used if
available. If the model is a repository or other files are not available,
the repository-level README is analyzed. Once the documenta-
tion to analyze is determined, the README or docstring is iterated
line-by-line, skipping non-relevant items commonly found at the
top of README files such as CI badges, image banners, heading
characters (such as ** or ===), and administrative notes such as
“**NOTE: This repo..”. When the first relevant line is found, then it
is stripped of Markdown or HTML characters and any hyperlinks.
This cleaned line is returned as a potential name. If this potential
name is not found, then the repository name is used as a fallback.

2.2 Reference Extraction

We chose to implement a module to extract references to papers
because in preliminary user testing, data scientists tend to discuss
models in terms of corresponding academic papers. This module
uses three rule-based approaches to extract references: 1) regular
expressions to search for common reference formats, 2) search for
arXiv IDs with correspond lookups to the arXiv API, and 3) identify
and import code blocks containing BibTeX references. The first
approach attempts to find a variety of references that may include
various conferences or even blog posts while the second and third
approaches attempt to find specific formats that are popular with
machine learning papers. For all three approaches, the module
searches across README files and docstrings using the same rules
as the model name module. In the case of overlapping references
found by multiple approaches, the reference with the most metadata
as measured by fields extracted is kept with a preference for the
arXiv and BibTeX approaches over the pattern-matching approach.

The first approach uses nine regular expression patterns to find
both references to academic papers and links to blog posts and
other webpages. The patterns were developed by examining ex-
isting references in documentation for repositories in model zoos.
The metadata returned for this approach varies depending on the
pattern. The simplest example is a blog post which returns only the
article title and the URL while a more complicated pattern may re-
turn the title, list of authors, year, arXiv ID, and URL. This approach
is the broadest in terms of what types of references are allowed, as
any conference, journal, or blog post is potentially valid. However,
the pattern-based approach is quite limited in that only references
that match the patterns defined will be matched.

The second approach searches for arXiv papers. ArXiv is a
preprint hosting service particularly popular with academics in
Al fields [3]. Specifically, links to arXiv papers are searched for
within the given README and then the arXiv ID is extracted from
the link. The ID is then looked up against the arXiv API [1] for
additional information such as the article title, authors, and pub-
lishing date. The advantage of this approach is that arXiv is very
popular amongst machine learning researchers and is commonly
used. Using the arXiv API also allows for extracting reference in-
formation in a standardized way that is robust to differing citation
styles. The disadvantage of using arXiv is that its references tend
to be preprints and publishing conference or journal information is
often lost or unavailable.

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

The third approach searches for code blocks within the docu-
mentation for BibTeX references. This particular approach relies
on searching for code blocks as defined by the Markdown language
that GitHub uses for README files. The entire code block must be
a valid BibTeX reference (it cannot contain anything except BibTex).
Multiple entries in the code block are allowed. Usage of BibTeX
seems to be particularly popular to provide a citation to a model
repository’s associated paper. The advantage of this approach is
that BibTeX is a well-established and precise format.

2.3 Dataset Extraction

Data management is a hard challenge in engineering Al systems [7,
38] and models in software repositories often have no formal de-
scriptions of datasets used. Our module attempts to automatically
extract and link models to the datasets used. For this version, the
module extracts the name of the dataset and potentially a link to
the dataset. The module uses two rule-based approaches: searching
for links in the README and searching for references to common
datasets. The first approach allows for finding arbitrary datasets
and the second approach allows for finding commonly used datasets
in machine learning papers. For the first link-based approach, the
README is searched for links that contain dataset-related key-
words, specifically “dataset”, “data”, and “corpus.” The names and
then referenced URLSs of the extracted dataset is returned. The
second approach uses a set of 640 common dataset names and
searches for mentions to these datasets in the README. To avoid
partial matching of short dataset names such as “MNIST” versus
“Fashion-MNIST,” matching datasets must be their own token(s) and
surrounded by whitespace or punctuation. If this approach finds
a match, then only the dataset name is returned. For cases where
both approaches return the same dataset, such as the “New York
Times Corpus,” the extracted metadata is merged by combining the
name and link. This module follows the same rules to the model
name module in determining which documentation file to analyze.

The list of common datasets was extracted using the Papers
With Code website [2] which compiles machine learning papers
and repositories and metadata that links the two. In the Papers
With Code data?, there are common machine learning tasks such
as Language Modeling and Semantic Segmentation. For each task,
there is a list of datasets and a leaderboard for each dataset with
associated papers and associated code repositories for each paper.
For example, the Language Modeling task includes the One Billion
Word dataset [11]. The module collected each of the datasets for
each of the tasks (as of 8/20/2019), resulting in 640 total dataset
names that the module searches for in the README. Some dataset
names were removed to prevent false positives such as “Datasets”
Since the datasets are known, future work should add additional
metadata for matched datasets. For example, if “MNIST” is matched,
then metadata such where the dataset is available and the schema
could also be made available.

2.4 Al Framework Extraction

Al frameworks play an important part towards enabling the model
development process. Recent years have seen a spike in the release

2 At the time of publishing, their data is available under the CC BY-SA license.

Tsay et al.

and adoption of Al frameworks [9] and framework-related ques-
tions are a major category of machine learning-related topics on
Stack Overflow [8]. Our module identifies which AI frameworks a
particular model uses by searching the source code. We focus on
Python Al frameworks as they are the most popular [9]. The module
then concatenates all Python (.py) and code cells of Jupyter Note-
books (.ipynb) into a single text string. Once all the code is extracted
and merged into a single string, a regular expression is used to find
the name of the modules imported, specifically cases of ‘import
module_name’ and ‘from module_name import function_name’
and all its variations (like with ‘as nickname’, multiple modules at
the same line, or functions from submodules). The found module
names are then filtered by a fixed list of well-known frameworks
such as Caffe, Keras, Lasagne, MXNet, NLTK, PyTorch (or torch), Ten-
sorFlow, Theano, scikit-learn (or sklearn). The only exception is the
Caffe2 framework which is not a Python module. Therefore, we
check the coexistence of the files: init_net.pb and predict_net.pb,
and if so, its name is added to the frameworks list. A full list of AI
frameworks for extraction is in Table 6.

2.5 Automated Domain Inference

This module uses machine learning to infer the domain of a given
model based on its available metadata. Here domain refers to the
genre or type of activity that the model is associated with, for ex-
ample: Computer Vision, Natural Language Processing (NLP), etc.
A general issue with extracting model metadata is that often the
domain of a model is not explicitly defined. However, machine learn-
ing practitioners often naturally describe models by their domain.
We use machine learning on a public dataset of model repositories
to create a machine learning model that takes in model metadata
as input, and outputs the model’s inferred domain and task along
with a confidence score.

To create the domain inference model, we created a training and
validation dataset of repositories and their associated domain and
task using data from the Papers With Code website [2]. In this case,
domain is a more general category for models whereas task is a
more specific activity within the category. Given the previous exam-
ple in the datasets extractor module, in Papers With Code, Natural
Language Processing (NLP) is a domain and Language Modeling is
a task within that domain. We use data from Papers With Code be-
cause it provides ground truth for the domains and tasks for model
repositories which is often unavailable otherwise. We use a total
of 2,915 repositories labeled with domains and tasks from Papers
With Code along with 300 repositories written in Python that have
nothing to do with machine learning as negative examples for a to-
tal of 3,215. These negative examples were manually gathered from
GitHub’s most popular Python repositories. This dataset is then
split into training and validation sets with 70% or 2,237 repositories
in the training set and 978 in the test set. For the current version
of this module, we take a bag-of-words approach with the input
model metadata. Specifically, only the README is considered in
the domain inference model but it is stripped of all tags and special
Markdown characters and then tokenized and vectorized.

Through examining the dataset and empirically, we settled on
an ensemble of support vector classification models that work in a
two-stage process as seen in Figure 2. The first stage determines

AIMMX: Artificial Intelligence Model Metadata Extractor

if a given model’s domain is Computer Vision, Natural Language
Processing (NLP), Other, or Unknown (not a model). Depending on
the results of the first stage, the given model is then fed into one of
three multiclassification models: 1) Computer Vision tasks, 2) NLP
tasks, or 3) Other domains. The result of the ensemble is a domain
and task, or in the case of Other domains, just the domain, along
with a confidence score. For example, Model A may be determined to
fall under the Computer Vision domain in the first stage and is then
fed into the Computer Vision task model and has Object Detection
as the task with a confidence of 0.68. Model B may be determined
to fall under Other domain in the first stage and then is determined
to be in the Medical domain in the second stage with a confidence
of 0.72. The Computer Vision, NLP, and Other domain split was
done due to the unbalanced nature of the ground truth distribution
of the dataset. Out of 2,915 labeled model repositories, 1,654 (56.7%)
are Computer Vision and 824 (28.3%) are NLP. The other domains
make up 15% of the dataset with Playing Games the largest at 171
(5.9%). Additionally, 300 non-model software repositories written
in Python were added to the dataset and labeled as “Unknown” to
give negative examples. The full list of domains and tasks inferred
is available as Appendix B.

Domain Model Task/Other Domain Model

Computer Vision Tasks
1 (Image Classification, Face
Detection, Object Detection, etc) Domain

(and Task)

(wi confidence)

Computer Vision gl

|

Natural Language

Processing (NLP) —L
-

Other —L
]

Unknown
(not a model)

Model Metadata
NLP Tasks

(Text Classification, Language

Modeling, Machine Trans, etc)

Other Domains
(Playing Games, Medical, Graphs,
Speech, Misc.)

Unknown
(w/ confidence)

|

Figure 2: Domain inference machine learning model ensem-
ble diagram.

3 EVALUATION AND PRELIMINARY
ANALYSIS

We evaluate our automated Al model metadata extractors through
a dataset of 7,998 public models from open source software repos-
itories. We perform individual evaluations for each of our five
model-specific metadata extraction modules. Each of the module
evaluations uses its own methodology and subset of the collected
dataset. We also manually evaluate the system as a whole with a
subset of the dataset. The evaluation dataset and each module eval-
uation data subset are available as part of the replication package>.

3.1 Evaluation Dataset

To evaluate our extractors, we collected a dataset of public Al model
software repositories on GitHub. The challenge was to identify
repositories on GitHub that contain Al models rather than just
being Al-related. For our dataset, a repository was considered to
contain an Al model if it contains artifacts to define and/or train a
model with data, or the resulting artifacts of the training process.

Shttps://zenodo.org/record/3609308

MSR *20, October 5-6, 2020, Seoul, Republic of Korea

For example, Al-related frameworks, purely data, or documenta-
tion repositories do not count. To solve this challenge, we gathered
repositories associated with AI models from three sources: 1) 284
“model zoo” example repositories, 2) 3,409 repositories extracted
from Al-related papers on arXiv [3], and 3) 4,324 repositories asso-
ciated with state-of-the-art Al models [2] (19 models overlap from
multiple sources). The dataset is summarized in Table 1.

Model zoos are good candidates for evaluation because these
repositories tend to be well-documented and maintained. We gather
284 models from six model zoos of popular Al frameworks: Ten-
sorFlow, Caffe2, Keras, PyTorch, MXNet, and the Model Asset Ex-
change. In this case, the six model zoos are either a single GitHub
repository with multiple folders each containing a model or a col-
lection of multiple GitHub repositories. We expand our dataset by
collecting software repositories that are associated with Al-related
papers, assuming that these repositories are more likely to con-
tain Al models. From over 41,000 academic papers on a dataset of
Al-related arXiv [3] papers published on the Kaggle competition
service [31], we gathered 3,409 repositories by using bulk paper
access to search the papers for GitHub links. After processing the
extracted GitHub links to ensure uniqueness and removing mal-
formed or irrelevant links (e.g. links to GitHub itself rather than
repositories), the dataset contained 3,938 links. After attempting
to extract metadata from this dataset and removing inaccessible
and dead repositories, the arXiv dataset contains 3,409 repositories.
Additionally, whereas the model zoo dataset mostly uses deep learn-
ing, the arXiv dataset contains both deep learning and traditional
machine learning models. Lastly, we gather 4,324 repositories as-
sociated with state-of-the-art (SotA) Al papers using the curated
Papers With Code website [2]. The website lists various machine
learning tasks with associated datasets and leaderboards of the
performance of Al papers for these datasets. One or more software
repositories are linked with each of these papers. We used data
from this website to train our domain inference module because
it contains model-related metadata that is curated and annotated.
We also use this labeled metadata to evaluate some of our modules.
Since the metadata extracted by our model-specific modules are not
directly available, evaluating these modules often requires manual
labeling which is available through their public data. The results of
the evaluations are summarized in Table 2.

3.2 Model Name Extraction

To evaluate the model name extraction module, we created a test
set that is a random sample of 400 repositories or 5% of the collected
dataset of 7,998. Due to the nature of the model name extractor,
there is a lack of ground truth for model names in the dataset
which requires a manual evaluation. Model names in particular
are difficult to evaluate automatically because it is possible for
multiple model names to be descriptive or correct for a given model.
For this evaluation, one of the researchers manually examined the
extracted names in the test set. A name is considered correct if it
is more descriptive than the default repository name. For example,
“entropy-sgd” versus “Entropy-SGD: Biasing Gradient Descent Into
Wide Valleys.” The name must also not include any formatting
characters such as “###Model Name.” If the extracted name matches
the default repository name, it is considered incorrect unless the

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

Tsay et al.

Table 1: Evaluation dataset summary.

Model Zoo No. Models URL

TensorFlow Models 73 https://github.com/tensorflow/models

Caffe2 Model Repository 87 https://github.com/caffe2/models

PyTorch Examples 12 https://github.com/pytorch/examples

Keras examples directory 42 https://github.com/keras-team/keras/tree/master/examples
MXNet examples directory 38 https://github.com/apache/incubator-mxnet/tree/master/example
Model Asset Exchange 32 https://developer.ibm.com/code/exchanges/models/

Model Zoo Dataset 284

arXiv Paper Dataset 3,409

SotA Paper Dataset 4,324

Total 7,998 (19 overlap)

Table 2: Evaluation results summary.

Evaluation Count Metric Value
Model Name 400 Correctness 0.853
Reference 4,094 Precision 0.655
Dataset 160 F1 0.757
Framework 252 Precision 1.000
Domain Inference 978 Domain Accuracy 0.859

Task Accuracy 0.723
System 80 Precision 0.872

Recall 0.833

default repository name is the full name of a model or approach. For
example, “BERT” is correct for the BERT model [13]. The percentage
correct of the test set was 85.3% or 341 of 400 repositories.

3.3 Reference Extraction

To evaluate the reference extraction module, we created a test set
with 4,094 pairs of paper references and model software repositories.
For this evaluation, we needed repositories with known connec-
tions to references. We made use of the SotA dataset described
earlier from Papers With Code [2] as it links together paper refer-
ences with software repositories. We assume that the link should
also work in reverse: each Al model software repository should be
associated with its paper. Papers in the test set may be associated
with multiple repositories and repositories may be associated with
multiple papers. For the evaluation, we measure the precision of our
reference extraction module. We chose to use precision due to the
direction of the labeled data available. Whereas our extraction has
a one-to-many relationship between repositories and references,
the labeled data has a one-to-many relationship between references
and repositories. To reconcile the two, we identify pairs of refer-
ences and repositories and examine if the extracted metadata for
the repository contains the associated reference. Specifically, we
count the pair as correct if the title of the reference in the test set
matches one of the references in the extracted model metadata for
the repository. The precision of our evaluation was that 2,682 or
65.5% of the pairs in test set were correct.

3.4 Dataset Extraction

To evaluate the dataset extraction module, we created a test set that
is a random sample of 160 repositories out of the collected dataset of
7,998. We performed a manual evaluation because we lacked ground
truth for datasets associated with models. One of the researchers

Table 3: Frameworks extracted from model zoos models.

Model zoo Count Framework(s)

Caffe2 87 Caffe2

Keras 42 Keras, TensorFlow, Theano, scikit-learn
MXNet 38 MXNet, Keras, Caffe, PyTorch, scikit-learn
PyTorch 12 PyTorch

TensorFlow 73 TensorFlow, Keras, NLTK, scikit-learn

manually examined each of the repositories in the random sam-
ple to create a ground truth dataset of available datasets for each
repository. The researcher had access to the same documentation
artifacts that the dataset extractor had access to: the README file
in most cases or the docstring if the model is a single Python file.
Using that documentation, the researcher had to determine which
datasets the model used to either train or evaluate the model. For
example, a given image classification model may use “ImageNet”
to train the model and evaluate the model on “CIFAR-10.” For each
repository in the sample, we then compare the names of extracted
datasets to the manually created ground truth set. The precision
of our evaluation was 76.91%, the recall was 75.99%, and the F1
score was 75.75%. In further inspection of the evaluation sample,
86 or 53.8% of the repositories had no extracted datasets with the
F1 score of this subsample at 80.2%. In the 74 (46.2%) repositories
with extracted datasets, the F1 score was 70.5%.

3.5 Framework Extraction

To evaluate the framework extraction module, we use 284 models
from “model zoos” as ground truth as most model zoos are associ-
ated with a particular deep learning Python framework as seen in
Table 1. The precision of the module can be assessed by whether
the Al frameworks extracted from models match the framework the
200 is associated with. For example, a model from the TensorFlow
zoo should have the TensorFlow framework in its extracted meta-
data. A total of 252 models are from these framework-associated
model zoos which are summarized in Table 3 along with all of
the extracted frameworks. For all cases we see that the expected
framework is extracted for a precision of 100%.

3.6 Automated Domain Inference

To train the domain inference module, we created a training dataset
from a subset of the SotA dataset along with non-model software
repositories. Specifically, from the 3,215 repositories labeled with
domain information, 30% or 978 were reserved for a test set. Each

AIMMX: Artificial Intelligence Model Metadata Extractor

Table 4: Domain inference evaluation result summary with
breakdown by domain.

Dataset Size Domain Accuracy Task Accuracy
Test Set 978 0.859 0.723
Computer Vision 502 0.940 0.785
NLP 252 0.802 0.583
Other 134 0.597 0.597
Unknown 90 0.956

of the repositories in the test set were labeled with a domain con-
sisting of: Computer Vision, Natural Language Processing (NLP),
Other, or Unknown (not a model). Repositories labeled with Com-
puter Vision or NLP domains are also labeled with an associated
task. Repositories labeled with Other domain are also labeled with
a more specific domain such as Medical, Playing Games, etc. For the
evaluation, we determine the accuracy for both the domain stage
and the task/other domain stage of the domain inference ensemble.
As Unknown domain models do not go to the task/other domain
stage, they are not included in the accuracy calculation for that
stage. The domain stage accuracy for the test set is 0.859 and the
task stage accuracy for the test set is 0.723. We break down the
results by domains in Table 4 and note that the domain stage per-
forms better than the task/other domain stage. Similarly, Computer
Vision performs better than NLP which performs better than Other
domains, perhaps due to having more examples in the training set.
We also note that our module performs very well at discriminating
between models and not-models (Unknown) at 0.956, suggesting
perhaps future usage of the domain inference module to automati-
cally determine if a given software repository is an Al model.

3.7 System Evaluation

To evaluate the entire extraction system holistically, we manually
evaluated extracted metadata for a random sample of 80 reposito-
ries of the collected dataset of 7,998. We first manually created a
ground truth dataset from this sample. The researcher who created
the ground truth dataset had access to the same sources as the au-
tomated extraction: GitHub repository, README files, and Python
code. Using domain knowledge, the researcher manually annotated
the extracted model metadata sample by comparing to this ground
truth dataset, listing two cases of errors: properties that are present
but incorrect and properties that are missing. For example, the au-
tomated extractor may extract three properties from a model: name
is “MNIST model”, dataset is “MNIST”, and the model has three
authors: A, B, and C. The ground truth dataset may then note that
the authors list is actually A, B, and D and that the README file
also has references to two papers. In this case, there are two errors:
1 property (authors list) is incorrect and 1 property is missing (ref-
erences). As the previous example demonstrates, properties that
are lists are counted as one property as it gives a more conservative
indication of the performance of the extraction. We then calculate
precision and recall for our sample based on the number of correct
and missing extracted properties.

For the system evaluation, the researcher additionally had to
determine whether the repository was actually an AI model us-
ing the criteria described earlier. Out of the original 80 sampled
repositories from the paper dataset, 66 (82.5%) of the repositories

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

actually contained models. For this evaluation, the documentation
of the model also needed to be in English. Sixteen ineligible reposi-
tories (14 non-models, 2 non-English) were removed and iteratively
replaced with random samples from the dataset of 7,998 until 80 eli-
gible total model repositories were collected. The system evaluation
was performed on this sample.

The precision of our system evaluation was 87.17%, the recall
was 83.34%, and the F1 score was 85.14%. Upon further inspection
of the evaluation sample, if the extracted properties were restricted
to only what was returned by the five extraction modules described
earlier, then the precision drops to 70.73%, the recall to 66.83%, and
the F1 score to 68.48%.

4 PRELIMINARY METADATA USAGE

Automatically extracting standardized Al model metadata enables
quantitative analysis and tool support across a wide set of Al models.
We use our evaluation dataset of 7,998 models in both an exploratory
analysis of model reproducibility and in an example catalog tool.

4.1 Exploratory Reproducibility Analysis

We demonstrate the potential of the extracted metadata by quan-
titatively analyzing the evaluation dataset for AI model data and
method reproducibility. Al research papers tend to be poorly doc-
umented for reproducibility [17]. Borrowing terminology from
Gundersen et al. [17], we examine two types of reproducibility
for Al models in our evaluation dataset: data and method repro-
ducibility. Data reproducibility is the data used in Al experiments
whereas method reproducibility are the algorithms used and deci-
sions behind algorithm selection. We examine extracted datasets to
explore data reproducibility in our models and extracted references
to explore method reproducibility. Our analysis is exploratory be-
cause we do not attempt to manually reproduce Al models (such as
in [17, 26]) but rather quantitatively analyze a larger-scale dataset
for signals of reproducibility based on literature.

We first report descriptive statistics for the repositories in the
dataset which are summarized in Table 5. We split the statistics
by source of the repositories as described in the previous section:
“model zoos”, from arXiv [3] papers, and state-of-the-art AI mod-
els [2] (with 19 models that overlap). We report the median Stars
of repositories, the percentage of repositories that primarily use
Python (includes Jupyter Notebooks which tend to be popular with
data scientists), repositories with README files (which our ex-
tractors use as a source of information), repositories with inferred
domains (cannot be "Unknown"), at least one extracted reference,
at least one extracted dataset, and at least one extracted Al-related
framework. We note that most (72%) models in the dataset contain
at least one extracted reference, supporting a suggestion from pre-
liminary user testing that data scientists tend to discuss models in
terms of papers. We also note that the high level of extracted Al
frameworks is a positive sign for reproducibility, as knowing the
module dependencies in Jupyter notebooks also promoted repro-
ducibility [26] (a distribution of usage is available in Table 6).

For data reproducibility, we explore extracted datasets in model
metadata as a signal for documentation of datasets used in Al mod-
els. Compared to traditional software engineering, the success of

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

Table 5: Evaluation dataset descriptives.

Model Zoo arXiv SotA

Attribute Overall Dataset Dataset Dataset
Median Stars 12 17513 34 2
Uses Python 74% 96% 55% 87%
Has README 99% 100% 98% 100%
Domain Inferred 70% 45% 46% 90%
References Found 72% 43% 49% 92%
Dataset Found 42% 51% 31% 49%
Al Framework Found 98% 100% 96% 100%
Count 7998 284 3409 4324

Table 6: AI frameworks extracted with usage by repository.

Al Framework Repository Count

Caffe 415
Caffe2 113
Keras 1056
Lasagne 115
MXNet 164
NLTK 455
PyTorch 1744
TensorFlow 2556
Theano 411
scikit-learn 1139

Al models tends to be highly tied to data used and its process-
ing [10, 38]. In enterprise settings, this reliance on quality data for
success means that sharing and reusing datasets is vitally impor-
tant [7]. We use extracted datasets to explore the degree to which
types of models have documentation regarding datasets. Table 5
shows that 42% of models in our sample have an extracted dataset
with state-of-the-art models having a higher rate of having an ex-
tracted dataset at 49% and arXiv models at a lower rate at 31%. When
we split the models by domain (with "Unknown" domain models
removed), there is a noticeable increase in models with datasets,
particularly for the popular domains of Computer Vision (53%) and
Natural Language Processing (49%). The domain split is summa-
rized in Table 7. We note that a disproportionately small amount
of datasets tend to be used by most models, as the distribution of
datasets to repositories in our sample is highly skewed (skewness
6.07) with each dataset having an average of 26.0 repositories but a
median of 4.0. As a limitation in our current extractor, we are not
able to automatically determine if the dataset extracted from an Al
model is used for training, validation, or testing. Our findings are
in line with Gundersen et al’s study with a similar rate of dataset
sharing (49% vs 42%) [17].

For method reproducibility, we explore extracted references in
model metadata as a signal for documentation of algorithm selection
and design choices. We again borrow terminology from Gunder-
sen et al. to distinguish between AI program and Al method where
the method is the conceptual idea that the program implements. In
this case, we consider the software repository as the program and
papers referred to as describing the method. In particular, method
reproducibility also considers design decisions because often Al
development is much more flexible than traditional software devel-
opment, with tens to hundreds of candidates to be considered [38].
From our descriptives in Table 5, we see that 72% of models in our

Tsay et al.

Table 7: Repositories with datasets or references by domain
(“Unknown” is excluded).

Domain Count Datasets References
Computer Vision 3537 53% 86%
NLP 1484 49% 80%
Playing Games 245 29% 85%
Medical 129 23% 88%
Graphs 102 65% 85%
Speech 51 22% 84%
Misc 27 59% 89%
Total 7998 42% 72%

sample have at least one reference extracted with state-of-the-art
models having a much higher rate of 92% whereas arXiv models
are much lower at 49%. When we split the models by domain (Ta-
ble 7), we note that our known domains have higher rates of having
references, such as Vision with 86% and NLP with 80%. Similar to
datasets, a small amount of references also tend to be used by most
models. The distribution of references to repositories in our sample
is also highly skewed (skewness 15.12) with each reference having
an average of 2.1 repositories with a median of 1.0.

Our findings suggest that both state-of-the-art models and par-
ticular domains tend to have more documentation that supports re-
producibility. The concentration of references to particular datasets
and papers suggests that there may be low-hanging fruit in better
supporting these popular approaches and datasets. For example,
future work for AIMMX may identity that a popular dataset such
as MNIST is used and provide meta-features of the dataset such as
size and number of classes.

4.2 Model Catalog Tool

As an example of a tool that is able to leverage extracted metadata,
we implemented a catalog web application for the discovery and
evaluation of Al models. The catalog application consists of two
main views: a list of models with filter and search features (see
Figure 3) and a page that displays individual model details (see Fig-
ure 4). Models in this catalog are added through providing GitHub
repository URLs which are then passed to AIMMX for metadata
extraction. The metadata are then inserted into the catalog’s docu-
ment database, validated automatically, and then made available
for discovery. The system is available as an online service?.

The model list view is the main page for discovering models and
contains summary information for each model such as name, stars,
domain, frameworks used, and lifecycle stages. While the model
list itself is browsable by users, the main method of discovering
models is through the search and filter features, which allow for
querying or selecting multiple attributes that are based on prop-
erties in extracted model metadata. The model list view contains
a side panel with metadata attributes for filtering such as domain,
frameworks, and tags. Multiple attributes may be selected, enabling
the discovery of more specific models, for example, to find Com-
puter Vision-related TensorFlow models, the filter of “Computer
Vision” in Domain and the “TensorFlow” filter in Framework would
be selected. The top of the model list view contains a search feature

“https://ai-model-catalog-msr.us-south.cf.appdomain.cloud/

AIMMX: Artificial Intelligence Model Metadata Extractor

Al Model Catalog

= Models list & Stats (% User guide [About Login

) Search models by name, description, domain type, tag name, defined, tra

ed, valid

g train nvalc = @
7998 public models found. 200 displayed. Use the text search above and/or filters to narrow down the results.

Filters: Name Domain Framework(s) Lifecyclestages Readiness Createdat |

Text Summarizer % 5 TensorFlow

Trainability (57.5%) 3 Sep 2019
Deployabillty (70%)

> Lifecycle Stages

Readiness
Nucleus Segmenter # 2 TensorFlow,
Keras

Trainability (57.5%) 3 Sep 2019
Deployability (70%)

[~] Domain

[computer Vision (3537) gacial Emotion Classifier # 12 Trainabiliy (57.5%) 3 Sep 2019

[Graphs (102)) Deployability (70%)
[Medical 129)
[miscettaneous (27) Chinese Phonetic Similarity Estimator 3 Def Trainability (57.5%) 3 Sep 2019
el Langage Training Deployabiliy (70%)
Processing (1484)
[Playing Games (245) Deformable Convolutional Networks # 0 MXNet Definition (70%) Trainability (50%) 16 Aug 2019
[speech (51) Training (30%)
[unknown (2325)

TensorFlowl # 0 Definition (70%) Trainability (50%) 16 Aug 2019
Training (30%)

MSR *20, October 5-6, 2020, Seoul, Republic of Korea

AI Model Catalog

= Modelslist 3 Stats 1% Userguide [About Login
Pata Science Bowl 2018

Description
Where I create a CV model for the
DSB2018 challenge.

overview Definition Read me (from GiHub)

Domain
Frameworks
Type Medical
+ TensorFlow
+ Keras)
Lifecycle stages

Tags ® < g (

computer-vision deep-learing start Definition ® Training Trained Deployed
To%

net iagge sota %
Trainability 35%

Sources

+ GitHub Open URL Ci > Recommendations

Soclal actions References
« Create new issue!

Title Networks for

Authors.
Authors Olaf Ronneberger, Philipp Fischer, Thomas Brox
« Yassine Alouini O

URL http://arxiv.org/abs/1505.04597v1

Visibility: Public

Figure 3: Catalog list of available models, search bar, filters.

which composes metadata together and also indexes each field as a
searchable attribute directly in the CouchDB database. We index
searchable metadata in two ways which enables two methods of
searching: by general keywords or by filtering for specific attributes.
In the case of general keywords, searchable attributes are aggre-
gated into a single string and then tokenized. This approach then
allows for users to simply type any keyword into the search box
to search by any of these attributes. For example, typing resnet
into the search box will return models with “ResNet” in the name,
description, references, and so on. Specific attribute filters are also
searchable, similar to the filter feature but including additional
attributes such as name, description, and reference.

Once a user selects a model, the individual model detail view
enables users to assess a model for reuse. Details shown include
information such as tags, extraction source, authors, and license.
The signals for data and method reproducibility such as extracted
datasets and paper references are also visualized on this page. We
display the model’s applicable lifecycle stages (“definition” or pre-
training, training, and trained) as well as a percentage indicator
of how much information is available for a given lifecycle stage
for the selected model. For each lifecycle stage that is applicable
for a model, a tab is available that displays additional lifecycle-
specific information. for example, we display information about
code artifacts in pre-training, datasets in training, and trained model
weights in trained models. Users can also update specific fields
such as name, description, tags, and domain in the imported model
should the automated mining be inaccurate or incomplete. If the
linked repository changes, the model can be re-imported, which
passes the repository back to the automated extractors with an
option to preserve any manually edited fields. The model detail
view also contains recommendations for steps needed to train or
deploy a given model. For example, a model may be missing the
datasets property in its metadata and the corresponding suggestion
to increase trainability is to “add datasets for training.”

5 THREATS TO VALIDITY

External Validity. Despite our attempts to design AIMMX as gen-
erally as possible by not requiring the use of specific ML or Al
frameworks [23, 30] or user intervention [35, 36], the current ver-
sion only supports software repositories in GitHub. Mining GitHub

Figure 4: Catalog individual model detail page.

has its own potential challenges [19] but we mitigate many of them
in our evaluation dataset through not focusing on commits, pull
requests, nor the social network aspects of GitHub in our extraction.
Additionally, although AIMMX should work on most repositories,
many of our features and evaluation repositories are biased towards
Python. Although Python is popular with data scientists, future
work should examine differences in models that use other popular
data science-related languages such as R, Java, Matlab, or Julia.

Internal Validity. During the development of the extractors, we
used model zoos as canonical examples (see Table 1). The model
zoos chosen are popular but only contain deep learning models.
That means that our system may have unforeseen biases or er-
rors against traditional machine learning models. However, this
is mitigated by our evaluation dataset that contains at least 1,139
traditional machine learning models as well (based on the usage
of the scikit-learn framework). Similarly, our selection of models
from arXiv and SotA papers may have introduced biases towards
research code rather than enterprise or application code. We at-
tempt to mitigate this by also including model zoos in our dataset.
Another potential issue is that some of our evaluations relied on
the domain knowledge of one of the researchers to qualitatively
determine the ground truth of extracted metadata, specifically for
the name, dataset, and system evaluations. With any qualitative
analysis, there is the chance of subjectivity in the evaluation of
incorrect or missing metadata properties. Also, a single researcher
performed the analysis whereas using multiple researchers and
measuring agreement would have been more robust. Regarding the
exploratory analysis presented, we determined that the evaluation
dataset contains some erroneous repositories that do not actually
contain models. Although these repositories were not included in
the extraction evaluation, they were included in the exploratory
analysis due to lacking a scalable method of identifying and filtering
out these repositories. Future work should implement a classifier
to identify whether a repository contains Al model information.

Construct Validity. Our extractor evaluation focused on the pre-
cision and recall in the context of what is possible using its current
features. Due to the extractors not analyzing the model Python code
itself except for the docstrings, the evaluation also did not make use
of it. Our extractors then are missing theoretically possible model

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

metadata, for example, perhaps inferring input and/or output data
schemas or hyperparameters from provided Python code. For the
exploratory reproducibility analysis, we have not evaluated our
findings by manually reproducing Al models.

6 RELATED WORK
6.1 Software and Al Development

Artificial intelligence (AI) development as an engineering practice
has many intersections with software engineering practices, includ-
ing mining software repositories. Kim et al. [20] interviewed the
emerging role of data scientists on software development teams,
identifying five working styles that data scientists take on in these
teams, from insight providers, to team leads, and more relevant to
our work, model-building specialists whose models get integrated
into software applications. Bangash et al. [8] identified machine
learning-related questions asked on Stack Overflow, finding that
questions fell into broad categories of: framework, implementa-
tion, sub-domain, and algorithms. Our work also infers information
related to these broad categories, such as the Al framework, code ar-
tifacts, domain, and paper references for each models. It is our hope
that our extracted metadata enables similar quantitative analyses
across Al models rather than Stack Overflow questions. Software
engineering concepts have also been applied to machine learning
(ML) and AI systems, such as work by Sculley et al. [29] examin-
ing hidden technical debt in real-world ML systems. Relevant to
our work, they highlight the importance of strong abstractions for
ML systems and managing ML-specific artifacts such as datasets
and configurations. Amershi et al. [7] identify through interviews
fundamental differences between ML and non-ML software devel-
opment: the complexity of dealing with data, model customization
and reuse require unique skills, and components are difficult to
modularize due to often being “entangled.” Our work is motivated
by the insight that these important entangled components such as
datasets are often not directly observable (echoed in other papers
such as [10, 38]) from software repositories. Wan et al. [38] also
use interviews to focus on the differences between ML and non-ML
in many phases of software development such as requirements,
design, and testing. They find that the reliance on data and inherent
uncertainty in the development process create unique challenges
for ML systems. Our work assists in documenting some of the im-
portant ML-specific choices made in the development process such
as dataset and method selection. Our work also builds upon exist-
ing work on reproducibility in both software and Al development.
Pimentel et al. [26] quantitatively studied the reproducibility of
Jupyter notebooks which are popular with data scientists. Relevant
to our work, they found that the most common causes of failure
to reproduce were missing dependencies, hidden states, and data
accessibility. Gundersen et al. [17] found that Al research papers
tend to be poorly documented for method, data, and experiment
reproducibility. We borrow the concepts of Al method and data
reproducibility for our exploratory reproducibility study.

6.2 Model Metadata Mining and Inference

Machine learning has had a close and long relationship with data
mining [39], so it is natural that data mining techniques are ap-
plied to machine learning and Al models to analyze and enhance

Tsay et al.

them. Sethi et al. [30] extracted network topologies from certain
diagrams in academic papers about deep learning models. Vaziri
et al. [37] extracted conversational agents from web API specifi-
cations. Machine learning experiment management tools [34, 36]
often semi-automatically extract model metadata by requiring users
to instrument their model code with framework-specific instrumen-
tation libraries. Our software repository-based approach is also
similar to the experiment tracking MLFlow service [6]. However,
AIMMX is concerned more with extracting high-level contextual
information to reuse models such as papers, datasets, and domains
rather than automatically tracking the outcomes of experiments.
There are also many examples of machine learning being applied to
mining, such as automatic classification of software artifacts [21].
Projects like ML-Schema [28], an ontology for machine learning
algorithms, datasets, and experiments, have identified a gap of the
lack of interoperability between machine learning platforms. Our
solution was to extract standardized model metadata that focuses
on a high-level and contextual view of Al models. This is in contrast
to similar efforts such as ONNX [5], PMML [16], or PFA [27] which
focus on specifically defining the model’s computational network.
For example, for the same model, our metadata would describe the
domain of the model, references to relevant papers (e.g. [32]), de-
scriptions about where and what the model code and definitions are
(which may be ONNX, PMML, PFA, etc.), and descriptions of where
and what the training dataset is. A network definition representa-
tion of the same model would describe in detail the neural network
layers and its parameters. In this way, the metadata we extract is
complementary with other network representation formats.

6.3 Model Catalogs

Related work has also identified a need to catalog and manage Al
models and their associated pipelines and artifacts. The catalog tool
in our tool suite is a type of model management tool: it stores, tracks,
and indexes Al models. A similar tool of this type is ModelDB [36]
which automatically tracks Scikit-learn, Spark, and R models by
instrumenting code and allows users to view and compare models.
A similar system with a different scope is ModelHub [23] which
focuses on managing results and versions of deep learning models.
Their system includes a discovery system with a model comparison
and ranking feature [24]. In contrast, OpenML [35] focuses on
cataloging datasets and machine learning tasks with the intention of
promoting collaboration between data scientists. We also note that
every major deep learning framework has at least one model zoo, a
collection or catalog of example models (Table 1). The automatic
connections between domain, references, datasets, and repositories
in our extracted metadata is similar to the manual connections
made in the Papers With Code website [2]. We also use this website
as a source of ground truth data for our domain inference model.

7 CONCLUSIONS

This paper describes AIMMX which we intend as a step towards
furthering engineering support for Al development through provid-
ing standardized metadata for existing Al models. We envision that
generating analyzable metadata for disparate models is both the
first step towards managing models at scale and adapting existing
mining software repositories techniques to AI models.

AIMMX: Artificial Intelligence Model Metadata Extractor

REFERENCES

(1]

[2

—

[10]

[11

[12

[13

[14]

[15]

[16]

=
=

(18

[19

[20

[21]

[22

[23]

[24

[25]

[26]

[n.d.]. arXiv.org help - arXiv APL https://arxiv.org/help/api/index Accessed:
2020-03-13.

[n.d.]. Papers With Code: the latest in machine learning. https://paperswithcode.
com Accessed: 2020-03-13.

1991. arXiv.org e-Print archive. https://arxiv.org/ Accessed: 2020-03-13.

2008. The world’s leading software development platform - GitHub. https:
//github.com/ Accessed: 2020-03-13.

2017. ONNX. https://onnx.ai/ Accessed: 2020-03-13.

2019. MLFlow - A platform for the machine learning lifecycle. https://mlflow.org/
Accessed: 2020-03-13.

Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,
Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software Engineering for Machine Learning: A Case Study. In International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
291-300. https://doi.org/10.1109/ICSE-SEIP.2019.00042

Abdul Ali Bangash, Hareem Sahar, Shaiful Chowdhury, Alexander William Wong,
Abram Hindle, and Karim Ali. 2019. What Do Developers Know about Machine
Learning: A Study of ML Discussions on StackOverflow. In Conference on Mining
Software Repositories (MSR). 260-264. https://doi.org/10.1109/MSR.2019.00052
H Ben Braiek, F Khomh, and B Adams. 2018. The Open-Closed Principle of Mod-
ern Machine Learning Frameworks. In Conference on Mining Software Repositories
(MSR). 353-363.

Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin
Zinkevich. 2019. Data Validation for Machine Learning. In Conference on Systems
and Machine Learning (SysML).

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and
Phillipp Koehn. 2013. One Billion Word Benchmark for Measuring Progress
in Statistical Language Modeling. CoRR abs/1312.3005 (2013). arXiv:1312.3005
http://arxiv.org/abs/1312.3005

Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Conference on Computer Supported Cooperative Work (CSCW). 1277-1286. https:
//doi.org/10.1145/2145204.2145396

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805 (2018).

GitHub. 2016. GitHub API v3 | GitHub Developer Guide. https://developer.
github.com/v3/ Accessed: 2020-03-13.

T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. 2000. Predicting fault incidence
using software change history. IEEE Transactions on Software Engineering 26, 7
(July 2000), 653-661. https://doi.org/10.1109/32.859533

Alex Guazzelli, Michael Zeller, Wen-Ching Lin, Graham Williams, et al. 2009.
PMML: An open standard for sharing models. The R Journal 1, 1 (2009), 60-65.
Odd Erik Gundersen and Sigbjern Kjensmo. 2017. State of the art: Reproducibility
in artificial intelligence. In Conference on Artificial Intelligence (AAAI).

Charles Hill, Rachel Bellamy, Thomas Erickson, and Margaret Burnett. 2016. Trials
and tribulations of developers of intelligent systems: A field study. In Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). 162-170.

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub.
In Conference on Mining Software Repositories (MSR). 92-101. https://doi.org/10.
1145/2597073.2597074

Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2016.
The Emerging Role of Data Scientists on Software Development Teams. In Inter-
national Conference on Software Engineering (ICSE). 96-107. http://doi.acm.org/
10.1145/2884781.2884783

Y Ma, S Fakhoury, M Christensen, V Arnaoudova, W Zogaan, and M Mirakhorli.
2018. Automatic Classification of Software Artifacts in Open-Source Applications.
In Conference on Mining Software Repositories (MSR). 414-425.

T. Menzies and T. Zimmermann. 2013. Software Analytics: So What? IEEE
Software 30, 4 (July 2013), 31-37. https://doi.org/10.1109/MS.2013.86

Hui Miao, Ang Li, Larry S. Davis, and Amol Deshpande. 2016. ModelHub: Towards
Unified Data and Lifecycle Management for Deep Learning. CoRR abs/1611.06224
(2016). https://arxiv.org/abs/1611.06224

Hui Miao, Ang Li, Larry S Davis, and Amol Deshpande. 2017. On Model Discovery
For Hosted Data Science Projects. In Workshop on Data Management for End-
to-End Machine Learning (DEEM’17). 6:1—6:4. https://doi.org/10.1145/3076246.
3076252

T.J. Ostrand, E. J. Weyuker, and R. M. Bell. 2005. Predicting the location and num-
ber of faults in large software systems. IEEE Transactions on Software Engineering
31, 4 (April 2005), 340-355. https://doi.org/10.1109/TSE.2005.49

Jodo Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A Large-Scale Study about Quality and Reproducibility of Jupyter Note-
books. In Conference on Mining Software Repositories (MSR). 507-517. https:
//doi.org/10.1109/MSR.2019.00077

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

[27] Jim Pivarski, Collin Bennett, and Robert L. Grossman. 2016. Deploying Analyt-
ics with the Portable Format for Analytics (PFA). In Conference on Knowledge
Discovery and Data Mining (KDD) (San Francisco, California, USA). 579-588.
https://doi.org/10.1145/2939672.2939731
Gustavo Correa Publio, Diego Esteves, Agnieszka AAawrynowicz, PanAI)e Panov,
Larisa Soldatova, Tommaso Soru, Joaquin Vanschoren, and Hamid Zafar. 2018.
ML Schema: Exposing the Semantics of Machine Learning with Schemas and
Ontologies. In Reproducibility in Machine Learning Workshop (RML). https:
//openreview.net/forum?id=B1e8MrXVxQ
D Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Denni-
son. 2015. Hidden Technical Debt in Machine Learning Systems. In Conference
on Neural Information Processing Systems (NIPS). 2503-2511.
Akshay Sethi, Anush Sankaran, Naveen Panwar, Shreya Khare, and Senthil Mani.
2018. DLPaper2Code: Auto-generation of Code from Deep Learning Research
Papers. In Conference on Artificial Intelligence (AAAI). 7339-7346. https://www.
aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17100
Neel Shah. [n.d.]. ARXIV data from 24,000+ papers Version 2. https://www.
kaggle.com/neelshah18/arxivdataset/home Accessed: 2019-01-15.
Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and Alexander A Alemi.
2017. Inception-v4, Inception-ResNet and the Impact of Residual Connections on
Learning. In Conference on Artificial Intelligence (AAAI).
Erik H. Trainer, Chalalai Chaihirunkarn, Arun Kalyanasundaram, and James D.
Herbsleb. 2015. From Personal Tool to Community Resource: What’s the Extra
Work and Who Will Do It?. In Conference on Computer Supported Cooperative
Work (CSCW). 417-430. http://doi.acm.org/10.1145/2675133.2675172
Jason Tsay, Todd Mummert, Norman Bobroff, Alan Braz, and Martin Hirzel. 2018.
Runway: Machine Learning Model Experiment Management Tool. In Conference
on Systems and Machine Learning (SysML).
Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2014. OpenML:
Networked Science in Machine Learning. SIGKDD Explorations Newsletter 15, 2
(June 2014), 49-60. http://doi.acm.org/10.1145/2641190.2641198
[36] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,
Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. 2016. ModelDB: A System
for Machine Learning Model Management. In Workshop on Human-In-the-Loop
Data Analytics (HILDA). 14:1-14:3. http://doi.acm.org/10.1145/2939502.2939516
Mandana Vaziri, Louis Mandel, Avraham Shinnar, Jérome Siméon, and Martin
Hirzel. 2017. Generating Chat Bots from Web API Specifications. In Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software
(Onward!). 44-57. http://doi.acm.org/10.1145/3133850.3133864
[38] Z Wan, X Xia, D Lo, and G C Murphy. 2019. How does Machine Learning Change
Software Development Practices? IEEE Transactions on Software Engineering
(2019), 1. https://doi.org/10.1109/TSE.2019.2937083
[39] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2016. Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann.

S
&

[29

[30

[31

@
&,

[33

[34

[35

[37

A APPENDIX: TOOL AVAILABILITY

AIMMX as described in this paper is available at the time of writing
as an open source library under Apache License 2.0°. The evalua-
tion dataset and individual model evaluation sample datasets are
available as part of a replication set®. Instructions on installing and
using the AIMMX library are included in the replication set.

B LIST OF DOMAINS AND TASKS INFERRED

e Computer Vision

— Face Detection
Face Verification
— Image Classification
Image Denoising
Image Generation
Image-to-Image Translation
Object Detection
— Object Localization
Person Re-Identification
Pose Estimation
Scene Text Detection

Shttps://github.com/ibm/aimmx
®https://zenodo.org/record/3609308

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

- Semantic Segmentation
— Visual Question Answering
- Vision Other
e Natural Language Processing
— Dependency Parsing
Language Modelling
— Machine Translation
— Named Entity Recognition (NER)
Natural Language Inference
Part-Of-Speech Tagging
Question Answering

Tsay et al.

- Sentiment Analysis
— Text Classification
— Text Generation

— NLP Other

Other Domains

- Graphs

— Medical

— Playing Games

- Speech

— Miscellaneous
Unknown

