
Let's Talk About It: Evaluating Contributions through
Discussion in GitHub

Jason Tsay, Laura Dabbish, James Herbsleb
School of Computer Science and Center for the Future of Work, Heinz College

Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213 USA

{jtsay, dabbish, jdh}@cs.cmu.edu

ABSTRACT
Open source software projects often rely on code contributions
from a wide variety of developers to extend the capabilities of
their software. Project members evaluate these contributions and
often engage in extended discussions to decide whether to
integrate changes. These discussions have important implications
for project management regarding new contributors and evolution
of project requirements and direction. We present a study of how
developers in open work environments evaluate and discuss pull
requests, a primary method of contribution in GitHub, analyzing a
sample of extended discussions around pull requests and
interviews with GitHub developers. We found that developers
raised issues around contributions over both the appropriateness
of the problem that the submitter attempted to solve and the
correctness of the implemented solution. Both core project
members and third-party stakeholders discussed and sometimes
implemented alternative solutions to address these issues.
Different stakeholders also influenced the outcome of the
evaluation by eliciting support from different communities such as
dependent projects or even companies. We also found that
evaluation outcomes may be more complex than simply
acceptance or rejection. In some cases, although a submitter's
contribution was rejected, the core team fulfilled the submitter's
technical goals by implementing an alternative solution. We found
that the level of a submitter's prior interaction on a project
changed how politely developers discussed the contribution and
the nature of proposed alternative solutions.

Categories and Subject Descriptors

D.2.6 [Programming Environments]: Integrated Environments;
H.4.3 [Communications Applications].

General Terms
Management, Design, Human Factors.

Keywords
GitHub; transparency; open source; social computing; social
media; contribution; discussion; evaluation

1. INTRODUCTION
Open software development environments enable submitting code
to any project. This means many people with diverse expertise –
the “long tail” of contributors– can add unique value to a project.

At the same time, openness poses the formidable problem of
evaluating these contributions to ensure their quality and to
maintain technical integrity. When contributions are deemed
unsuitable or threaten technical integrity, a negotiation between
contributor and project members often ensues [16]. Our work
examines how this negotiation unfolds in an open environment,
where project members and contributors have little formal
authority to rely on in exerting influence.

For traditional open source software projects, the contribution
process is characterized as a meritocracy where "code is king"
[19]. According to this view, the decision to accept a code
contribution largely depends on technical merit, and review of
submissions identifies technical defects [15]. Technical merit, of
course, is a rich and complex notion, including not just
correctness, but notions of scope, style, design choices, priorities,
and inter-project dependencies. However, previous studies on
open source software suggest that the evaluation of a code
contribution is often a more nuanced process involving many
factors other than technical merit [7, 13, 15]. For example,
newcomer or non-member contributions are often summarily
rejected for violating project norms [13]. Contribution acceptance
is higher for submitters with existing relationships with core
members of a project, controlling for a number of technical
factors [23]. These previous results suggest that the contribution
evaluation process is more socially charged than the ‘code is king’
mantra would imply.

Extended code contribution discussions reveal important social
project dynamics and project members' values and mental
processes as they articulate arguments for or against a particular
change. While the average GitHub contribution generates little if
any discussion and involve very few developers [9], cases of
extended discussions occur as project members and the broader
community work to understand the implications of the suggested
change [15]. Changes to a project often have major impacts on
other related projects with different and perhaps conflicting goals
[5]. Previous work has found that more complex code
contributions to projects (in terms of lines of code and number of
files changed, and whether the change was previously defined) are
more likely to spur longer discussions about the suggested
changes [6, 15, 23]. There is also evidence that existing
relationships with project members may influence the nature of
these discussions, as recent work suggests lengthy discussions
around newcomer contributions have a very different outcome
than discussions around member contributions [23]. Although
previous work has noted the prevalence of extended contribution
discussions in response to complex contributions, we lack a
detailed understanding of the form and content of these
discussions.

A study of the content and form of comments in lengthy
discussions in response to code contributions would extend our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FSE'14, November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11... $15.00.

understanding of the dynamics of collaboration in an open
environment. The problems and issues identified in contributions
reveal unique challenges of collaborating with a heterogeneous
diffuse set of contributors with limited shared understandings and
common goals. In an open setting, project members have little or
no formal authority over contributors and vice versa [14]. The
methods and means they use to attempt to increase their likelihood
of acceptance may reveal what constitutes power in this setting.
Given the open nature of the environment, there is no prescribed
method by which contributions are resolved. What do the
outcomes of these lengthy discussions look like?

By better understanding the nature of comments in long
discussions around contributions to open software projects, we
can inform policies and tools that enable software developers to
better manage open projects. For example, if contributions
frequently result in certain types of conflicts, then collaborative
software development environments can incorporate specialized
conflict management tools [25]. Notification mechanisms (e.g.,
watching, following, mailing list subscriptions) can be more
precisely targeted to those whose interests are affected.

To understand extended contribution discussions, we studied
interaction in GitHub (github.com), a successful example of an
open development environment. On GitHub participants submit
contributions to projects by sending what is known as a pull
request [8]. We analyzed a set of pull requests generating
extended discussions from a large sample of open source software
projects on GitHub. Average-case pull requests typically generate
little to no discussion [9] and therefore are not very informative
about the reasons for acceptance or rejection. For this reason, we
chose to focus on only pull requests with extended discussions,
which often reveal the developers’ reasoning process. Using a
grounded approach we focused on the phenomenon of extended
contribution discussions (rather than interactions around
contributions more broadly) because these discussions are an
important aspect of the open collaboration process and a key place
where core and peripheral members negotiate around aspects of
project evolution and direction [4]. We explored the kinds of
issues core developers raised and the arguments they over both the
appropriateness of the problem that submitters attempted to solve,
and the correctness of the implemented solution in a submitted
code contribution. Due to the open nature of the software projects,
other stakeholders from outside the project observed and
participated in these extended discussions, sometimes attempting
to influence the outcome of the contribution through rallying
support of the audience or leveraging project or company
communities. We also found that non-member contributions were
more likely to be rejected following a long discussion. However,
although core teams rejected new submitter's contributions more
often, they almost always satisfied the submitter’s technical goal
by implementing an alternative solution. Core members interacted
more politely with new submitters and in cases of conflict, were
more likely to implement alternative solutions for these newcomer
submitters rather than simply suggest them. In the next sections
we motivate our research questions based on previous research,
describe our research setting and study methodology, present the
results of our discussion analysis, and discuss the implications of
our findings.

2. CONTRIBUTION AND DISCUSSION IN
ONLINE WORK
Previous research on open contribution evaluation suggests a
number of different ways discussions are used to resolve issues
that arise around contributions. This work suggests that

discussions around newcomer or non-member contributions may
evolve differently than for members, with different consequences.
We position our work in the literature of evaluating contributions
in peer production communities such as Wikipedia. We also
examine how developers in open source software projects ensure
the technical correctness of contributions. When more information
is available in open transparent environments such as GitHub,
developers use this information when evaluating contributions.
Informed by previous work, we develop research questions
around how developers discuss contributions in open
environments.

2.1 Deliberation in Online Communities
One can consider an open source software project as a type of
online community. Online communities are centered around
contributions from a wide variety of users. Successful online
communities rely on members contributing their unique resources
to the community, such as users uploading videos on YouTube or
posting pictures or comments on reddit. Kraut and Resnick [12]
analyze challenges that online communities face when trying to
encourage contribution: matching users to contributions needed,
making requests to members, using intrinsic and extrinsic
motivators, and grouping users together. They review evidence
showing that constant feedback to members, whether it be
character levels in World of Warcraft or community comments in
YouTube, motivates members to create more contributions.
Similarly, combining contributions with social contact also
encourages further contributions. For example, the GNOME
software project encourages socialization through forums and get-
together conferences [12].

The contribution evaluation process can have an important impact
on contributor motivation particularly for new members. In a
study of newcomer contribution on Wikipedia, Halfaker et al.
found that reverts decreased motivation for newcomers. Reverts
from experienced editors were the most demotivating [10],
suggesting that certain interactions around contributions may have
a particularly negative influence on motivation to contribute to a
project. Bryant et al. [2] found that contribution acceptance is an
important step in a newcomers socialization process. Newcomers
learn the conventions and contribution rules of the Wikipedia
community through observation (lurking) and direct mentoring
from more experienced users.
However, conversation on Wikipedia is most often used to
organize work, rather than to discuss issues or problems with
contributions. Viegas et al. [24] found that in Wikipedia editors
primarily used edit comments to coordinate article edits. Some
research has looked in detail at how the content of communication
influences participation, for example finding that politeness
strategies in an opening thread on a discussion forum increases the
likelihood of reply [3]. However, participation in forum-based
online communities is typically focused on social support and
information exchange, rather than collaboration around a shared
project. Thus we may expect to see new types of conversational
dynamics in contribution evaluation discussions where the
contribution is the focus.

2.2 Contributions in Open Source Software
As open source software often relies on the contributions of a
diverse group of software developers [5], members of software
project teams must evaluate and discuss contributions to ensure
the integrity of the software project.

Literature on the contribution process for open source software
projects suggests that evaluating contributions, especially from

unknown developers, is a complex social process. Krogh et al.
[13] found in their study of the contribution process in the Freenet
open source project that successful newcomers must follow
"joining scripts" before submitting a contribution. These joining
scripts involve participating in prior activity such as lurking on the
project's mailing list, participating in technical discussions, and
reporting bugs. They also found differences in the tone of
discussion between developers who were invited to join the
project versus developers who were not. For example, the detail
and specificity of feedback given was much more general for non-
joiners. Ducheneaut [7] noted that developers looking to make
successful contributions to the Python project needed to undergo a
progressive socialization process. Core members on a project
would vet contributions to ensure the code changes were
technically sound. Successful socialization allowed potential
submitters to learn project norms and to identify members of the
core project team. In order to successfully start the contribution
evaluation process, a submitting developer needed to "recruit"
core members of the project as a network of "allies".

When evaluating code contributions for technical correctness,
core project members often use a peer review process. Rigby et al.
[17] found in their examination of different peer review processes
in the Apache server open source project that early and frequent
reviews of small contributions from the core team were effective
in finding defects in contributions. In particular, the usage of the
project mailing list allowed for self-selection of expert core
members and a more open discussion between members. Ko and
Chilana [11] found that discussions around bug reports established
scope, proposed ideas, identified design dimensions, defended
claims with rationale, moderated the process, and finally made a
decision. The most powerful factors in decision-making around a
bug report were the participant's authority (developers over users)
and actions taken (writing a patch).

2.3 Transparent Work Environments
While evaluating contributions is a key process in all popular
open source projects, different environments provide different
tools and mechanisms for participating in discussions and
negotiations about them. The setting for our study is GitHub,
often cited as an example of a transparent environment [4].
Transparent environments incorporate social media features that
allow developers to utilize a much greater range of information
when making and evaluating contributions due to the visibility of
work across the entire community. Previous qualitative research
on GitHub by Dabbish et al. [6] showed that developers use this
information available in GitHub through social media features to
make a variety of subtle inferences about other developers and
projects.

Project managers, especially those in popular projects that
received many contributions (pull requests) per day, used
information available to them via transparency in order to assist in
the evaluation process by making inferences about the quality of
code contributions and submitter competence. At times, project
managers needed to communicate directly with submitters about
code contribution. Most often, this was done to negotiate
additional changes. Other times, core members needed multiple
rounds of discussion with the submitter in order to create a shared
understanding of what the submitter's contribution was attempting
to do and what the current direction was at the time of submission.
Core members also used inline interaction with specific lines of
code in order to address specific conflicts or to ensure conformity
with project style norms. The transparent nature of GitHub also
led developers to become acutely aware that their work actions

had an audience. Audience pressures led developers to change
their behavior. For example, developers spent some time
managing face by being careful not to offend developers by
publically rejecting long time contributors or not following
someone who followed them.

Marlow et al. [15] found that when GitHub developers engage in
information-seeking behaviors, they used information made
visible by the environment in order to form impressions of users
and projects. Developers would engage in information-seeking
behaviors after and during interactions with other developers on
GitHub. For example, developers looked to another developer's
previous work in order to better understand their coding abilities.
When evaluating a developer's contributions, project managers
would look to the submitter's other projects in order to better
understand how much assistance or extra effort the submitter
would require in order to accept their contribution. Core members
would also often account for uncertainty when evaluating
contributions. Uncertain changes required back-and-forth
discussion between the submitter and core members in order to
explain why the contribution could not be automatically accepted
and negotiate the outcome. In these cases, project managers would
make use of information about the code contribution and the
submitter, to decide how accommodating towards the submitter
they should be. For example, a project manager may weigh the
cost of fixing a contribution against the benefit of recruiting a new
member to the project.
Tsay et al. [23] found in a study of contributions in GitHub that a
number of social and technical factors influenced the probability
of a contribution being accepted. When contributions were highly
discussed, contributions were much less likely to be accepted.
However, the prior interaction of a submitter on the project
moderated the negative association of high discussion on a
contribution and acceptance. The submitter's prior interaction on a
project also had a positive association with acceptance.

The literature on deliberation in online communities suggest that
members engage in discussion to both encourage and evaluate
contributions to the community [6, 12, 13]. Open source software
projects, needing to ensure the technical integrity of code
contributions, engage in complicated social processes and peer
technical reviews [15]. Often, developers would also engage in
discussion in order to socialize themselves when joining a project
[6, 11]. Transparent work environments such as GitHub have
developers using information made visible due to transparency to
make inferences about projects and other developers when
evaluating contributions [5, 13]. However, we still know
relatively little about the kinds of issues that arise, and the nature
of discussions developers have when evaluating contributions.

2.4 Development of Research Questions
Our examination of literature on discussion around contributions
in online environments suggests a number of research questions to
advance our knowledge of how software developers discuss
contributions in open environments.

From online communities such as Wikipedia [24], we see that
editors engage in discussion over conflicts in article direction. In
open source software, developers discuss problems in bug reports,
making and justifying arguments when discussing the design of a
solution [11]. For more uncertain changes in GitHub, core
members engage in back-and-forth discussion to justify the value
of the contribution [15]. However, it is not well understood what
issues around open source software development need to be
worked out in these discussions. By better understanding the
issues, arguments, and criteria raised in contribution discussion,

we can identify challenges in collaborating with a diffuse set of
contributors in an open environment. This leads us to our first
research question:

(1) What are the different kinds of issues raised around code
contributions?
In online communities, members use intrinsic and extrinsic
motivators when making requests to encourage compliance [12].
One tactic identified in open source software is that submitters
recruit core members to assist in the evaluation process [7]. In this
way, submitters are able to influence the outcome of the
evaluation process. What is not well understood is the full range
of methods that different stakeholders may use to influence the
evaluation process. By better understanding the decision-making
process and how influence is brought to bear, we also gain insight
into what motivates software developers to accept changes. The
influence tactics used in an environment where there is little
formal authority [14] also reveal what constitutes power in open
collaboration. This leads us to our second research question:

(2) How do participants try to influence the decision process in
code contributions?
We find in online communities that the outcome of a contribution
evaluation may be farther-reaching than simply whether the
contribution itself is accepted. For example, the outcome of a
contribution and the identity of the evaluating editor in Wikipedia
has an impact on the motivation of a new editor to contribute
again [10]. In open source software environments such as GitHub,
project managers may decide to accept less desirable code
contributions in order to recruit new members [15]. We
investigate the following research question in order to better
understand the less obvious impacts of outcomes of code
contribution evaluations:

(3) What are the different outcomes for proposed code
contributions?
In online communities, new submitters tend to interact differently.
In Wikipedia, new editors tend to make peripheral, specific edits
to articles [2] and tend to be sensitive to reverts from experienced
editors [10]. In open source software, new contributors tend to
follow "joining scripts" before making successful contributions
[13]. Similarly, a submitter's level of prior experience on a project
has an association with contribution acceptance and seems to
moderate the negative effect of discussion [23]. This suggests that
a submitter's prior experience (or lack of) changes the nature of
discussion around code contributions and may influence the
outcome of the evaluation. By understanding how a submitter's
prior experience impacts discussion, we may better understand
how projects manage both new and experienced contributors. This
leads us to our fourth research question:
(4) Is discussion different when the submitter has prior experience
with a project?

3. METHOD
To answer our research questions, we created and analyzed a
dataset of both interview data and contribution discussions from
the social open source software hosting site GitHub [8]. The
interviews allowed us to investigate the practices of a relatively
broad sample of developers, while the content analysis of entire
collections of comments for specific pull requests allowed us to
analyze complete exchanges and their outcomes in some depth.
In this section, we present descriptions of the GitHub setting, our
data collection methods, and analysis technique.

3.1 Research Setting
GitHub [8] is a software project-hosting site started in 2008 that
brands itself "Social Coding" that is home to over ten million
repositories [1]. Some of the more popular open source software
projects that GitHub hosts include Ruby on Rails and jQuery. We
selected GitHub as our research setting because it is an open
environment where public software repositories are made
available for anyone to participate. In GitHub, one of the main
methods for contributing to a software project is by sending a
"pull request". First, potential project contributors "fork" or make
a personal copy of the target project where they can make changes
to, add, or alter functionality. This potential contributor can then
request that code changes in their fork be merged into the
project’s main repository. This can be accomplished by creating a
"pull request” that contains the code changes that the submitter
would like integrated into the original project. Core members in
the original project have several options to "close" the pull
request, including accepting the offered contribution and merging
it into the project code base or rejecting the contribution. Of
course, project managers may also ignore the contribution, leaving
the pull request "open".

Core project members and other interested users can discuss the
contribution by creating comments on the pull request page, to
suggest improvements or ask questions about the code change.
There are two different methods for commenting on a pull
request: general comments about the contribution as a whole (see
Figure 1), or code-level inline comments for specific lines in the
code contribution (see Figure 2).

Figure 1. Example of pull request and discussion

Figure 2. Example of inline code comment for pull request

3.2 Data Collection
Our dataset consists of both a set of 423 comments from 115
developers, embedded in extended pull request discussions and
interviews with 47 users of GitHub.

3.2.1 Highly Discussed Pull Request Sample
From a larger dataset of 659,501 pull requests across 12,482
GitHub projects [23], we created a sample of highly discussed
pull requests (see Table 1). We defined "highly discussed" as pull
requests where the number of comments is one standard deviation
(6.7) higher than the mean (2.6) in the dataset, filtering out all pull
requests with less than 9 comments in the discussion. For each
pull request, we include both discussion comments on the pull
request itself and code-level inline comments. From this reduced
sample, we randomly selected 20 highly discussed pull requests
from 20 different software projects. From these 20 pull requests1,
a total of 423 comments from 115 developers were analyzed. As
we reached theoretical saturation, we drew no more pull requests
from our sample. We constrained our sample to ensure that it
included both accepted and rejected pull requests, as well as
submitters with varying levels of prior interaction with the project
(see Table 2).

As our research questions are concerned with the outcomes of
contributions, we wanted a roughly equal representation of both
accepted and rejected pull requests. As we were also investigating
how a submitter's prior experience on a project changes the
discussion around a contribution, we also wanted a roughly equal
distribution of new submitters (no prior interaction) and
experienced submitters (see Table 2).

Table 1. Description of pull request sample
Number of pull requests 20
Total number of comments 423
Mean number of comments 21.1
Total number of participants 115
Mean number of participants 5.75

Table 2. Distribution of pull request sample
 Yes No
Pull Request Accepted? 9 11
Submitter Has Prior
Interaction on Project? 11 9

3.2.2 Interview Data
To supplement our sample of extended discussions, we also
conducted a series of semi-structured interviews with 47 GitHub
users [6]. Our goal in these interviews was to document and
understand in more detail the different ways GitHub functionality
was used by our participants, including how pull requests were
created and managed. We solicited participants via email and
conducted our interviews in person or via phone or Skype.
Remote participants shared their screen during the interview using
Adobe Connect so users could demonstrate their activities on the
site. Participants were asked to walk through their last session on
GitHub, describing how they interpreted information displayed on
the site as they reviewed earlier work activities. For this study, we
used responses to that portion of the interview where participants
were asked to describe their last pull request sent to a project and
to describe the last pull request received for their own project.
None of the pull requests mentioned in interviews were included

1 http://jsntsay.com/work/FSE2014.html

in our sample of pull request discussions. Interviews lasted
approximately 45 minutes to one hour overall. These interviews
were then transcribed verbatim to support further analysis.

3.3 Data Analysis
We applied a grounded theory approach to analyze how
developers evaluate contributions in transparent environments in
our sample of pull request discussions [21]. We first identified
instances of how developers evaluated code contributions in the
comments of five pull request discussions. For each instance
analyzed, we identified the participants involved, information
made available by GitHub that is used by developers, the type of
comment, what portion of the code contribution is referred to, and
the higher-level goal of the participant in regards to the
contribution. We then conducted open coding on these examples,
grouping examples into categories that were conceptually similar.
This process revealed different categories of interaction between
different types of participants for a code contribution. We used
this first set of categories to code the remaining pull request
discussions, revealing additional categories. We used an iterative
process until the discussions no longer revealed new interactions
not captured in our existing set of categories (theoretical
saturation). During this process, we also identified similar
interactions in our interview data and used these examples to
supplement our pull request discussion examples.

4. RESULTS
Our analysis found that both core and peripheral developers in a
project engaged in discussion in order to resolve issues around
both the problem that the contribution is attempting to solve and
the solution that the contribution implements. Different
stakeholders such as third parties and audience members
sometimes attempted to influence the outcome of discussion. We
found different outcomes for contributions and discussions around
them. We also found that the submitter's level of prior interaction
on the project changed the discussion around the code
contribution.

4.1 Issues Raised Around Code Contributions
(1) What are the different kinds of issues raised around code
contributions?

Contributions to projects in the form of pull requests sometimes
generated issues that the submitter and the core members must
resolve through discussion. We saw that core members raised
different issues over the appropriateness of the problem that the
contribution was attempting to solve. We also saw that developers
discussed how to optimize the solution that the contribution
implements with various levels of involvement. At times, core
members in the project also disagreed amongst each other over
these issues.

4.1.1 Disapprove of the Problem Being Solved
One main issue that developers discussed was whether the
problem that the code contribution was trying to solve is
appropriate. Core members would sometimes discuss whether the
pull request belonged in their project while other times would ask
contributors to prove the value of their contribution through
explicit use cases.

4.1.1.1 Project Appropriateness
Core members questioned whether the submitter was using the
project in the intended manner. Sometimes, contributions offered
by submitters using the project inappropriately would attempt to
implement features that were not in the intended scope of what the
project was meant to do (P2, P7, P14, P15, P16, P19, P20). In

these cases, core members offered alternative solutions to the
submitters outside of their own project. One example had the
project owner offer to assist the submitter in learning how to use
the project correctly offline, in a local hackathon (P15). If the
contribution was outside the scope of the project, core members
sometimes suggested that the contribution actually be made to an
upstream or downstream project (P20).

To prevent submitters from wasting time on inappropriate
contributions, core members expected submitters to propose their
contributions before implementation to get feedback on its
appropriateness (P7). In cases when core members inadvertently
accepted inappropriate earlier contributions into the project, later
contributions would be necessary to revert the inappropriate
change (P20), further increasing the time and effort wasted for
both submitters and core members.

“The idea of proposals & issues before-hand is to see the
likelihood of something getting merged, so you don't feel you've
wasted all your time if it doesn't.” (P7)
Some GitHub developers explained in interviews that submitters
would sometimes inadvertently solve inappropriate problems
because the project would move in a different direction unknown
to the submitter. For example, a core developer's planned changes
to a project made a submitter's contribution obsolete.
"So, yeah. Not sure what’s gonna happen with this off the top of
my head, if it’s gonna get landed or-- I mean because some of the
things that we’re doing with this refactor of the master branch
make this whole thing a little unnecessary now."

4.1.1.2 Value Proposition Request
In order to explore whether the contribution truly had value for
the project, core members asked submitters to provide specific use
cases or test cases (P1, P2, P3, P4, P13, P14, P20). Core members
used this requirement as a way to confirm that the specific
problem submitters were trying to solve in their contribution was
appropriate. In some discussions, core members refused to
continue the evaluation process until use cases were presented
(P1, P3, P4, P14).

In response, submitters offered use cases or test cases to
demonstrate the problem their contribution solved. For the
contributions in this category, submitters that provided code
examples or references to downstream projects (P2) tended to
successfully prove the appropriateness of their problem and also
tended to have their contributions accepted. Occasionally, third
parties from the audience would also jump in, offering their own
use cases when core members asked for them (P13). When
submitters were unable to satisfactorily demonstrate use cases that
their contribution solves, the contribution tended to be rejected. In
some cases, core member simply closed the pull request until a
test case was provided (P1). In one case, the submitter, uncertain
about their own use case due to discussion, decided to close their
own pull request until a better use case was presented (P14).
“I think it may be better to close the pull and the associated issue
unless I'm overlooking a real use case… I'm going to close this for
now, if someone comes up with a good use case we can reopen.”
(P14)

4.1.2 Disapprove of the Solution
When core members and third parties from the audience
questioned the solution that the pull request implemented,
developers offered a gradient of responses to questionable
solutions from passively questioning the submitter’s approach to

actively suggesting alternative solutions to offering their own
solutions to the problem.

4.1.2.1 Question Solution Approach
Core members raised objections to the way the submitter chose to
implement the solution in the contribution. Most often, developers
raised questions about the submitter’s approach to implementing
the solution in the pull request (P2, P4, P8, P9, P10, P11, P17,
P18, P20). In some cases, core members asked about design
decisions that the submitter made when implementing the pull
request (P2, P4, P8, P10, P18, P20). These decisions ranged from
the forming of dependencies (P10, P20) to more elegant code (P4)
to even best commenting practices (P8). Other cases had core
members act as testers for the code change, reporting bugs with
the pull request (P11, P17). In one case, the core member actually
reported the bug after the pull request was accepted (P17).

“Wow. Don't you think you're going a little bit overboard with
this many comments? Or is this just for my benefit when checking
on your code?” (P8)

4.1.2.2 Suggest Alternative Solutions
Some core members and third parties from the audience took a
more active approach when the contribution’s implemented
solution was suspect and suggested alternative solutions to the
submitter’s implemented solution, often with the expectation that
the submitter would implement the suggestion (P2, P7, P8, P9,
P11, P15, P19). Many of the suggestions given were technical in
nature, suggesting ways to improve the code through optimization
(P9) or better practices (P11, P15) or avoiding bugs (P7, P8).
Others were more stylistic in nature, suggesting changes to
conform to best practices or project norms (P19).
“I would suggest having an array of possible node locations and
loop through them in order using fileExists to determine if it's
available.” (P15)
Submitters sometimes followed and sometimes ignored suggested
alternative solutions. In one pull request, a core member made a
suggestion for an alternative solution that the submitter accepted
and attempted to implement. Not being able to implement the
suggestion, the submitter decided to leave the pull request as-is
(P11). In some cases, the submitter actively rejected the suggested
alternative solution. In one case, a third party developer from the
audience suggested an alternative solution that the submitter, a
core member, rejected with an explanation why (P9). With these
two examples, regardless of the outcome, submitters addressed
suggestions from the core or third parties. In one case, a new
submitter even preemptively addressed an obvious alternative
solution, explaining why it would not be appropriate for the
particular problem that the contribution was trying to solve (P2).

"You might ask: "why don't you install the suggested rb-inotify
gem to avoid getting that [...] warning?" The reason is that such a
task can only be performed by the end user who uses my scripts; I
have no control over their machines" (P2)

4.1.2.3 Advertise Own Solution
As a response to issues in how the solution in the contribution was
implemented, some core members or third party developers from
the audience took the initiative to implement their own alternative
solutions to the problem presented in the contribution and then
advertise their own solution in the pull request discussion (P2, P3,
P13, P15). The actual form of the alternative solution varied
widely from case to case. Interested third party developers from
the audience gave examples of solutions to similar problems that
were implemented in outside projects that the developers

previously worked on and provided hyperlinks to that project (P2,
P3). One third-party developer from the audience, in response to
problems in the implemented solution, made suggestions for an
alternative solution and then implemented the solution in another
pull request (P3). This case created a competing solution to the
same problem that the original contribution attempts to solve. In
another case, a core member sent a pull request to the submitter’s
personal fork of the project that made code changes to the
contribution, effectively making a contribution on a contribution
(P13).

”@[submitter] I sent you a PR([link to pull request]) that
accounts for once in the callback, avoiding a potential infinite
loop. Test included too.” (P13)

4.1.3 Disagreement among the Core
In almost a third of cases in our sample of highly discussed pull
requests, core members disagreed amongst themselves in regards
to the best way to approach a problem or what is the best possible
solution for a contribution (P2, P3, P6, P8, P10, P11, P12). In
these cases, core members often showed deference to more senior
core members, often project owners or project creators (P2, P3).
On the other hand, more senior core members used the
opportunity to instruct or even admonish other core members (P2,
P3). In some cases, senior core members even handed down edicts
to what the project will do about a particular problem.
“@[not-as-core developer] The point is that we need to allow this
kind of integration (that's part of the interoperability we try to
promote).” (P3)
Core members, when disagreeing with each other, used various
techniques to hedge their arguments. In many cases, disagreeing
developers used humor and emoticons to soften their arguments
(P2, P8, P10).

“Hey guys, sorry I'm a bit late but I don't feel comfortable with
writing what's not diagnostic to me to STDERR.
[...] We're losing control guys!!!!!! :P” (P2)

4.2 Methods of Influencing the Decision
Process for Code Contributions
(2) How do participants try to influence the decision process in
code contributions?
Various stakeholders involved in the code contribution employed
different methods to influence the outcome of the contentious pull
request. Third-party stakeholders in the audience at times applied
pressure to core members to accept code contributions.

4.2.1 Audience Pressures
Third party developers in the audience held stakes in particular
code contributions, often needing a particular change for their
own usage. These interested audience members applied pressure
to core members in order to influence their evaluation decision.
Developers in the audience were able to pressure core members
through rallying support from other developers and projects or
companies.

4.2.1.1 Community Support
Outside developers in the audience with a stake in a code change
commonly demonstrated support for a particular contribution by
making comments in pull request discussions indicating that they
needed the change (P1, P2, P3, P5, P7, P9, P13, P14, P16, P19).
Most commonly, audience members indicated their support in the
form of a “+1” or a “+1” emoticon (P2, P5, P13, P16).

“@[submitter] +1. It's very convenient for setting off one time
operations that need to respond once to a recurring event, such as
a set up operation.” (P13)

Other than simply indicating support, audience members also
commented that they were experiencing the same problem as what
the code contribution fixes, increasing the perceived number of
users that needed the change (P1, P7). In some cases, core
members also indicated their support for a particular code change
to other core members (P2, P3, P14, P19).
“Just to confirm that this issue still exists in master… The fix in
the pull request works for me. Please consider merging.” (P1)
Interviewed GitHub members explained that when they perceived
that their community needed a feature through feedback, they
were motivated to implement those features.
"I get feedback from those people and kind of think about and
think, oh gosh, it looks like what they really need is this feature
and this will work for them and I'll do the design."
Other interviewees complained about such practices, citing the
noise that such community support brought when trying to discuss
issues around code contributions.
"I mean it's kind of difficult to have a productive conversation
about something like that when you get a million people coming in
and just saying plus one, plus one, plus one, plus one"

4.2.1.2 Project and Company Support
In some cases, rather than simply indicating a need for the change,
third party developers in the audience cited their own projects or
companies that would benefit from the contribution in question
(P3, P6, P13, P14, P16, P18). In these cases, developers
intensified their stake in the code contribution, demonstrating that
other projects or even companies were relying on the change to be
accepted.

“@[core member] if you are still interested in finding a solution
for this problem i can give you any details you need just ask. I'm
very interested in solving this because we are investing a lot on
[project] in my company but every single of our applications uses
saml for authentication [sic].” (P3)

Developers also seemingly leveraged their own user base in order
to exert influence on the contribution decision process. In one
example, the submitter mentioned that the contribution was
actually meant to solve a problem on behalf of one of the
submitter’s users (P3). Another case had the submitter mention
that many users of the project switched to the submitter’s fork of
the project in order to avoid a particular bug that the contribution
also fixes (P16).

“Several people have started using this fork in order to get
around the issues reported in [issue link].” (P16)

4.2.2 Alerting the Core
In order to engage particular core members in the contribution
discussion, both the submitter and core members made use of the
@mention feature in GitHub, which notifies specific developers
who are mentioned during discussion. (For example, @octocat
sends an email notification to the developer with username
“octocat”.) Developers used the @mention feature in order to alert
core members who are key to the evaluation process for the
contribution in question (P2, P3, P13, P14, P16, P18, P19).
Submitters or other core members @mentioned core members in
order to start the code review process (P13, P16). Occasionally,
the reverse also occurred, with core members @mentioning the
submitter in order to continue the review process (P14). Often,

core members @mentioned other core members in order to solicit
feedback from more qualified core developers (P2, P3, P18 [not
an @mention but still a solicitation of feedback from fellow core
members]). In one case, a core member alerted the rest of the core
team before merging a code contribution in order to give other
core developers an opportunity to comment.
“I think these two sketches look good, anyone see any issues with
merging?” (P19)
In some cases, third party developers also @mentioned core
members in order to attempt to influence their decision regarding
the contribution (P13)
“+1 @[core member] please re-open this for consideration. .once
does not provide the same functionality” (P13)

4.2.2.1 Submitter Asks Core About Evaluation Status
After periods of inactivity in the discussion around a contribution,
submitters often asked the core team about the status of the
evaluation process for the pull request (P6, P13, P16). The periods
of silence before a submitter asked about status ranged from 18
days (P13) to 2 months (P16). Inactivity, as discussed in a later
section, caused developers to fear that their contributions were
ignored by the core team.
“Anything I can do to get this merged? @[core member] @[core
member] ?” (P13)

4.3 Outcomes for Proposed Code
Contributions
(3) What are the different outcomes for proposed code
contributions?
Based on prior work on the factors that influence what pull
requests are accepted in GitHub [23], highly discussed
contributions tended to be rejected while submitters prior
interaction on a project tended to have their contributions
accepted. In this work, we have an opportunity to examine in
detail what types of discussions result in rejected or accepted pull
requests. With the different issues raised around code
contributions, we also saw different methods of resolution and
different behaviors after a pull request is resolved.

4.3.1 Rejection and Meeting Technical Goals
One finding from the analysis of discussions is that while many of
the highly discussed pull requests we examined were rejected, the
core team would often still meet the underlying technical goal of
the submitter (P3, P7, P13, P15). For example, in a few
contributions, the core team realized during the discussion around
the contributions that the underlying problem that the submitter
was attempting to solve was much more complicated than
originally thought. After discussing the contributions, the core
team decided to implement their own, more complete, solution to
the original problem (P3, P13). In this way, although the submitter
did not have their contribution accepted, the core team fulfilled
the submitter’s technical goals. In one case, the submitter had
submitted a malformed pull request, leading to its rejection.
Rather than resubmitting the contribution, the submitter instead
asked a core member to implement the bugfix. In this case, the
submitter was more interested in meeting personal technical goals
than having “credit” for having an accepted pull request (P7).
“So I'm going to let [core member] decide what he want to do
with it. It's an easy search&replace action, so it doesn't have to be
this PR.” (P7)

4.3.2 Contribution Outcomes
When submitters or third-party stakeholders exerted influence
through audience pressures, the pull request we examined were no
more likely to be accepted by core members (4 rejected and 7
accepted). However, with the exception of one pull request (P1),
whenever the audience influenced the outcome, the technical goal
of the submitter was met, either through the contribution being
accepted or the core team implementing their own solution to the
problem in the contribution (P2, P3, P5, P6, P7, P9, P13, P16,
P18, P19).
In cases where the problem that the contribution was attempting to
solve was suspect, especially when the project usage or scope was
inappropriate, the contribution tended to be rejected (P1, P3, P4,
P7, P13, P14, P15, P20). In the two exceptions (P2, P16), where
the problem the contribution solved was suspect yet the pull
request was accepted, the core team disagreed amongst each
other, engaging in extended discussions about the contribution.

4.3.3 Future Contributions Advertised
After contributions were resolved, submitters often advertised
future changes in the discussion (P2, P4, P7, P11, P18, P19). Even
if the contribution was rejected, submitters sometimes offered
suggestions on similar changes in the same direction as the
offered contribution (P4, P7. P11).

“I'm closing this for now, as this needs more testing. I would also
like to investigate whether we can support multi-monitor
configurations better than today.” (P11)

In changes that were accepted, some submitters indicated future
changes that were incoming (P18, P19).

“Let us know about syntax, formatting etc. on these 4. We 50
more in the pipe passing internal peer review. […] We're upping
our schedule to get more pages. Out we have a ton in the works
but need to sign off on them internally before handing them over.
“ (P18)

4.4 Submitter's Prior Experience
(4) How does a submitter’s prior experience with a project
change the discussion?

Prior work on factors influencing pull request acceptance in
GitHub [23] found that a submitter’s prior interaction had an
influence both on whether pull requests and highly discussed pull
requests were accepted. In this work, we were able to examine
how a submitter’s experience changed the nature of discussions
around their contributions.

4.4.1 Core Thanking New Submitters
When submitters were new to the project, core members were
sure to politely engage with the new submitter regarding their
contribution. For new submitters, core members thanked the
submitter for their contribution as their first comment (P2, P5, P6,
P11, P12, P13, P18, P19). In other cases, core members
apologized to new submitters for delays in responding (P1, P5,
P6, P10, P12, P13, P18, P20). Often, developers in GitHub
interpreted delays in response as the core project team ignoring a
contribution and use this information as a signal for poor project
management. Often, the first comment to a new submitter
combined the two, both thanking a new submitter for their
contribution and apologizing for a delay in response at the same
time.

“Looks impressing. Since I'm a bit busy with some other stuff I'll
made a review in a week or something. Please be patient. And
thank you for contribution :)” (P5)

Interviewed GitHub developers were aware of the value of being
courteous in regards to accepting pull requests.

"I mean if there’s a problem with the library you don’t want to
rush in and say, “Your library sucks, and it’s wrong in the
following ways and I’ll fix it for you. You need to merge it,” or
whatever. It really comes off badly [...]. But if you come at it from
another direction and say, “This is a great library. Thanks for
providing it. I do have one or two little changes that I’d like to
make. I think it’d help the library as a whole. What do you
think?” That generally comes off much, much better."
Interviewees also explained that they would be polite to new
submitters to try to encourage contributions.
"For smaller things, does it help people to contribute? So I think
that this is kind of entirely an issue of how do you handle it [...].
Not to say that you’re always squashing their ego or putting them
down when you’re making these changes for them. I think that you
can say, “Hey, thank you for the pull request. There were some
issues here, here, here that I fixed up and then I merged it. In the
future try and make sure that you do this. Thanks again, though,
for the code.” Usually people respond pretty positively to that."

4.4.2 Alternative Solutions for New Submitters
When the submitted contribution’s implemented solution was
suspect, depending on the level of the submitter’s prior interaction
on the project, core members and third parties had different
responses when offering alternative solutions. In general,
regardless of the submitter’s experience on the project, other
developers questioned the approach of the contribution’s
implemented solution. However when discussing alternative
solutions to the contribution, the prior experience of the submitter
seemed to change how developers offered their alternative
solutions. Submitters with experience on the project tended to
receive suggestions on alternative solutions to solve the
contribution’s problem (P7, P8, P9, P11, P15) while new
submitters to a project tended to receive implemented alternative
solutions from core members and third party developers (P2, P3).
In both pull requests, multiple alternative solutions were
advertised, ranging from competing contributions (P3) to similar
solutions in other projects (P2, P3).

5. DISCUSSION
In our observations of the interview and pull request discussion
data, we found that developers were very aware of the different
stakeholders when discussing contributions. Developers also had
multiple methods of influencing the evaluation process, including
influencing power relationships in the project. We also found that
core members and submitters defined and evolved project
requirements during discussions around code contributions.

5.1 Stakeholders Influencing the Outcome
One of the side effects of open collaboration is that the
environment allows for third party developers to participate in
discussions around evaluating contributions. In open
environments, a project's dependencies are not fully known to the
core members. Any developer can independently use any library.
Notification mechanisms, such as GitHub alerts, make developers
in the audience aware of important changes that may affect them.

While prior work on GitHub has suggested that the presence of a
perceived audience itself pressures developers into behaving
differently [6], our findings suggest that the audience takes on a
much more active role when evaluating contributions. Similar to
developers overhearing discuss ions in collocated software teams
[22], we found in our sample of pull requests with extended

discussions that developers in the audience would often jump into
discussions where they may have stakes in the outcome. Gousios
et al. [9] found in their sample of pull requests that discussion
participants who have never committed to the repository are rare.
We found, however, that extended discussions tended to draw
developers who were not directly related to the pull request, i.e.,
were neither the submitter nor core members. Most of these third
party developers made some peripheral contribution to the project
at some point.

The ability of third party developers to independently join the
discussion around any contribution may influence how core
members and submitters evaluate and discuss contributions.
Submitters received suggestions from both core members and
third party developers from the audience and would often need to
justify their design decisions. In some cases, submitter’s solutions
even competed with alternative contributions from third party
developers that solved the same problem as the submitted
contribution. The extra negotiation required due to suggestions
from the audience may raise the cost for core members to evaluate
a pull request, reducing its chances of acceptance [23]. At the
same time, this exploration of alternative solutions by the
audience seems to be a form of decentralized experimentation. So
while core developers may be less willing to make risky
experimental code changes while being watched, third parties
from the audience may be willing to take on the risk.
Software development environments with pervasive notification
mechanisms such as GitHub allow developers the affordance of
staying aware of projects where they may be stakeholders but not
necessarily core members. This awareness has the side effect of
creating an audience that may actively attempt to influence the
development of a software project through participating in
discussions or developing experimental code changes. Future
research should explore how notification mechanisms enable
developers to be actionably aware of projects they may have
stakes in. A better understanding of how developers act on
awareness notifications would inform the design of tools that
better notify developers when to participate in relevant
discussions in dependent projects and allow core members to
effectively manage experimentation from third party stakeholders.

5.2 Power Relationships in Evaluating
Contributions
Discussions around contributions had three types of participants:
submitters, project core members, and third party audience
members. These three groups of developers appeared to have
implicit power relationships.

The closer the developer was to the project's core, the more
influence the developer seemed to wield. For example, a third
party developer's suggestion had much less weight to the
submitter than one from a core member. Core members had the
ultimate power to accept or reject a code contribution due to their
commit access. The degree of influence also varied within the
core, with certain core members showing deference to more senior
core members such as project owners or veteran contributors.
Submitters, having implemented a solution, demonstrated
investment in the project. Third-party stakeholders had not
demonstrated such investment.

To help determine power relationships in a project, developers
used information present in the environment to make inferences
on the expertise of other developers [15]. Core members and
submitters may attribute less influence to the comments of a third
party due to inferences made using cues in the environment. For

example, a third party developer with no connection to the project
may be seen as a certain "type of person" who only reports
problems but does not actually contribute code [15] and therefore
may have less of a stake in the technical discussion about the
contribution. The submitter's prior experience on the project was
also used as information to infer the submitter's expertise. Prior
experience may be an indicator of the degree of socialization a
developer has undergone for the project [7]. Socialized
developers, possessing knowledge of the core team and project-
specific norms, may be less likely to create risky contributions or
contributions of uncertain value.

While third party and submitting developers may wield less power
than core members during the contribution evaluation process,
these developers were able to leverage their own communities to
influence the core team on a project. We saw that developers
would cite their own projects and companies in order to intensify
their perceived stake in the code contribution, perhaps increasing
their influence on a change through pressure [12]. Leveraging user
bases in this way to influence the core was often effective because
core members understood that their authority is closely tied to
keeping users satisfied [14]. In some cases, we saw that
stakeholder communities would actually cause a submitter to
create the contribution in the first place. For example, if a user
was experiencing a bug in a certain project, the project owner
implemented and submitted a bug fix to an upstream project [6].
This suggests a chain of influence across the upstream and
downstream dependencies in software projects. The pressure to
contribute to an upstream project may have benefits to the
technical integrity of both projects due to ensuring that a code
change resides in the most appropriate location in terms of
architecture. For example, if a bug goes unfixed in an upstream
project, multiple downstream projects may all have to implement
the same workaround or bugfix.
How these power relationships between open source developers as
well as the incentives and decision rights that are present support
good decision-making in terms of evaluating code contributions is
not well understood. Future research should investigate these
relationships in more detail, in order to determine what factors
allow developers to wield more influence than others when
making evaluation decisions. Environments that make these
factors such as expertise visible or allow for different notification
capabilities may have an impact on these power relationships and
the outcome of code contribution evaluations.

5.3 Developing Software Requirements
Through Discussion
Core members and third party developers from the audience often
raised issues around a contribution, either about the
appropriateness of the problem solved in the pull request or the
correctness of the implemented solution. In cases where the
contribution's problem was suspect, submitters and core members
often engaged in extended discussions about the appropriateness
of the code change. For example, the submitter may have
attempted to implement a feature that is outside the scope of what
the software project should be able to do. This discussion over
whether the problem to solve was appropriate was actually a
negotiation over the requirements of the software project.

Open source software projects tend to not have formal
requirements documents that are created through a formal
elicitation process [20]. Instead, requirements in open source
projects tend to emerge in forms such as mailing list messages or
forum posts as a byproduct of the community discussing the
direction and assignment of future code contributions [18]. In our

findings we saw a similar method for evolving the requirements of
the software project when submitters and core members discussed
whether a particular code contribution was appropriate for the
software project. In other words, whether the problem that the
submitter was trying to solve was a problem within the scope of
the project's projected feature set.
Besides submitters and core members, other stakeholders such as
the third party developers in the audience were also able to
participate in evolving the requirements of the software project by
participating in the discussion. This is somewhat similar to how
community members in traditional open source projects will
communicate their needs through bug reports or feature requests
[16]. In this open environment however, we saw that perhaps a
wider variety of stakeholders were able to influence the
requirements of the software project through discussion.

Future research should examine this connection between software
requirements and contribution discussions in more detail. Future
tool design may explicitly recognize when requirements are being
evolved during discussions and may archive these discussions in a
more visible way for the benefit of core members.

6. CONCLUSION
In this work we examined how open source developers discuss
and evaluate contributions. We found that when developers raised
issues with either the problem the submitter was attempting to
solve or the solution that was implemented in the pull request, it
provided an occasion to discuss alternative solutions or negotiate
requirements. Different stakeholders also attempted to influence
the outcomes of contributions through pressuring the core or
directly alerting them. The transparent environment in our setting
provides specific mechanisms for stakeholders in the audience
who are outside of the submitter and project core team to
participate in the evaluation process.

We found unexpected outcomes for contributions where though a
submitter may have their pull request rejected, the core team still
fulfilled the technical goals of the submitter in some other way.
We also found that the submitter's level of prior interaction on the
project changed how core and audience members interacted with
the submitter during discussions around contributions.
Our results inform the design of notification and discussion
mechanisms for large-scale collaboration where a wide variety of
stakeholders participate in evaluation discussions around code
contributions. Our findings may also inform how distributed
developers negotiate software requirements during code
contribution evaluation discussions. Future work should
investigate how different kinds of event notification mechanisms
influence participation in contribution discussions. Ideally, all
legitimate interests should be able to enter the discussion, with
notification mechanisms alerting third party stakeholders of
relevant discussions. Since submitters also rally support as an
effective tactic, more systematic ways of showing support for a
change, and perhaps helping to prioritize it relative to other
possible changes might also prove useful. Finding ways to
identify when conflict resolution mechanisms might also facilitate
better and less disruptive ways to handle difficult decisions.
Finally, since social relationships seem to have an impact, various
mechanisms for visualizing these connections or making them
more salient might also impact these negotiations.

7. ACKNOWLEDGMENTS
This material is supported by the Center for the Future of Work at
Carnegie Mellon University's Heinz College and by the National
Science Foundation under awards IIS1111750 and ACI 1322278.

8. REFERENCES
[1] 10 Million Repositories - GitHub:

https://github.com/blog/1724-10-million-repositories.
[2] Bryant, S.L., Forte, A. and Bruckman, A. 2005.

Becoming Wikipedian: transformation of participation in
a collaborative online encyclopedia. Proceedings of the
2005 international ACM SIGGROUP conference on
Supporting group work (New York, NY, USA, 2005), 1–
10.

[3] Burke, M. and Kraut, R. 2008. Mind Your Ps and Qs:
The Impact of Politeness and Rudeness in Online
Communities. Proceedings of the 2008 ACM Conference
on Computer Supported Cooperative Work (New York,
NY, USA, 2008), 281–284.

[4] Corbin, J. and Strauss, A. 2008. Basics of qualitative
research: Techniques and procedures for developing
grounded theory. Sage.

[5] Crowston, K., Wei, K., Howison, J. and Wiggins, A.
2008. Free/Libre open-source software development:
What we know and what we do not know. ACM Comput.
Surv. 44, 2 (Mar. 2008), 7:1–7:35.

[6] Dabbish, L., Stuart, C., Tsay, J. and Herbsleb, J. 2012.
Social coding in GitHub: transparency and collaboration
in an open software repository. Proceedings of the ACM
2012 conference on Computer Supported Cooperative
Work (New York, NY, USA, 2012), 1277–1286.

[7] Ducheneaut, N. 2005. Socialization in an Open Source
Software Community: A Socio-Technical Analysis.
Computer Supported Cooperative Work (CSCW). 14, 4
(2005), 323–368.

[8] GitHub: http://github.com. Accessed: 2013-08-21.
[9] Gousios, G., Pinzger, M. and Deursen, A. van 2014. An

Exploratory Study of the Pull-based Software
Development Model. Proceedings of the 36th
International Conference on Software Engineering (New
York, NY, USA, 2014), 345–355.

[10] Halfaker, A., Kittur, A. and Riedl, J. 2011. Don’t Bite the
Newbies: How Reverts Affect the Quantity and Quality
of Wikipedia Work. Proceedings of the 7th International
Symposium on Wikis and Open Collaboration (New
York, NY, USA, 2011), 163–172.

[11] Ko, A.J. and Chilana, P.K. 2011. Design, Discussion, and
Dissent in Open Bug Reports. Proceedings of the 2011
iConference (New York, NY, USA, 2011), 106–113.

[12] Kraut, R.E. and Resnick, P. 2012. Building Successful
Online Communities: Evidence-Based Social Design.
MIT Press.

[13] Von Krogh, G., Spaeth, S. and Lakhani, K.R. 2003.
Community, joining, and specialization in open source

software innovation: a case study. Research Policy. 32, 7
(Jul. 2003), 1217–1241.

[14] Lerner, J. and Tirole, J. 2002. Some Simple Economics
of Open Source. The Journal of Industrial Economics.
50, 2 (2002), 197–234.

[15] Marlow, J., Dabbish, L. and Herbsleb, J. 2013.
Impression formation in online peer production: activity
traces and personal profiles in github. Proceedings of the
2013 conference on Computer supported cooperative
work (New York, NY, USA, 2013), 117–128.

[16] Mockus, A., Fielding, R.T. and Herbsleb, J.D. 2002. Two
case studies of open source software development:
Apache and Mozilla. ACM Trans. Softw. Eng. Methodol.
11, 3 (Jul. 2002), 309–346.

[17] Rigby, P.C., German, D.M. and Storey, M.-A. 2008.
Open source software peer review practices: a case study
of the apache server. Proceedings of the 30th
international conference on Software engineering (2008),
541–550.

[18] Scacchi, W. 2004. Free and open source development
practices in the game community. Software, IEEE. 21, 1
(2004), 59–66.

[19] Scacchi, W. 2007. Free/Open Source Software
Development: Recent Research Results and Methods.
Architectural Issues. M. V Zelkowitz, ed. Elsevier. 243–
295.

[20] Scacchi, W. 2002. Understanding the requirements for
developing open source software systems. Software, IEE
Proceedings- (2002), 24–39.

[21] Strauss, A.L., Corbin, J. and others 1990. Basics of
qualitative research. Sage Newbury Park, CA.

[22] Teasley, S., Covi, L., Krishnan, M.S. and Olson, J.S.
2000. How Does Radical Collocation Help a Team
Succeed? Proceedings of the 2000 ACM Conference on
Computer Supported Cooperative Work (New York, NY,
USA, 2000), 339–346.

[23] Tsay, J., Dabbish, L. and Herbsleb, J. 2014. Influence of
Social and Technical Factors for Evaluating Contribution
in GitHub. Proceedings of the 36th international
conference on Software engineering (2014), In
preparation.

[24] Viégas, F.B., Wattenberg, M. and Dave, K. 2004.
Studying Cooperation and Conflict Between Authors
with History Flow Visualizations. Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (New York, NY, USA, 2004), 575–582.

[25] Van Wendel de Joode, R. 2004. Managing conflicts in
open source communities. Electronic Markets. 14, 2
(2004), 104–113.

