
074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E 	 January/February 2013 | IEEE Software � 37

FOCUS: Social Networking

A new generation of development
environments takes a radical approach
to communication and coordination
by fusing social networking function-
ality with flexible, distributed version
control. For many years, software de-
velopment environments and software
architectures were designed around
the idea of leaving you, the developer,
in peace—free from inconsistent states
resulting from colleagues’ partially
completed changes, free from new bugs
that would complicate debugging your
own code, and free from comments
on and uses of your code before you
deem it ready for prime time. Hiding

functionality behind APIs meant you
didn’t have to grapple with the full
complexity of code that other teams de-
veloped, nor did you have to accommo-
date them reaching deeply into random
points in your own code.1

Although necessary, this isolation
was never ideal for the fundamentally
collaborative activity that is software
development. Code hidden behind an
API mostly remains a mystery to those
who invoke it. Exceptional conditions
that demand a more detailed under-
standing pose a formidable learning
curve.2 Changes that might facilitate
or conflict with your own work are

invisible to you until they’re complete.
Management practices often downplay
the difficulty of integration.3

In response to these collabora-
tive needs, several awareness tools
and practices have arisen to support
change visibility and conflict manage-
ment as code evolves. Some provide
signals about important activities in
other workspaces,4,5 whereas others es-
tablish norms and customs designed to
keep everyone up to speed.6 These ap-
proaches aim to strike a better balance
between isolation and collaboration.

Scale and Transparency
A more radical approach is sweeping
the open source world and gradually
working its way into corporate environ-
ments. This new approach blends flex-
ible version control with social media
functionality to create transparent work
environments, making the work visible.7

These transparent environments
mimic social network sites, where ev-
eryone can see and have meaningful ac-
cess to (almost) everything. Users can
create an “interest network” in which
they identify interesting people to fol-
low and code repositories they want to
watch. Events from these selected peo-
ple and repositories appear in each de-
veloper’s feed, keeping everyone up to
date on things that interest or concern
them. These environments, however,
differ from the most popular social
network sites in one fundamental way:
the social media functionality is tightly
integrated with software development
tools and artifacts so that developers
share code and technical artifacts, not
social updates about what they had for
dinner or pictures of their cats.

These transparent environments
are more powerful when coupled with
flexible, distributed version control sys-
tems such as Git, Mercurial, or Bazaar.

Leveraging
Transparency
Laura Dabbish, Colleen Stuart, Jason Tsay, and James Herbsleb,
Carnegie Mellon University

// Transparency helps developers on GitHub manage

their projects, handle dependencies more effectively,

reduce communication needs, and figure out what

requires their attention. Although transparency

is not a silver bullet, it shows great promise for

enhancing collaboration and coordination. //

s1her.indd 37 12/12/12 1:56 PM

38	 IEEE Software | www.computer.org/software

FOCUS: Social Networking

These systems do away with the idea
of a single master branch, allowing de-
velopers to create many forks and pull
commits from any branch into any
other. Although this approach can be
confusing, it lets users flexibly and se-
lectively share and customize code. Dis-
tributed version control, combined with
network graphs that show the relation-
ships of forks, allow developers to dis-
cover interesting changes, experiment
with them in separate forks, pull oth-
ers’ changes into their own branches,
and offer changes back to the reposi-
tory owner. Everyone interested in the
repository can see all the branches and
comment at will on repositories, com-
mits, and issues. With sufficient effort,
the tools of a previous generation can
accomplish these things; the big differ-
ence is that the sharing, notification,
and visibility are trivially easy.

Observing Transparency
In an effort to understand the sudden
popularity of transparent environments
and what makes them useful, we con-
ducted a qualitative study of social cod-
ing among users of GitHub’s free pub-
lic hosting service. We interviewed and
observed 24 developers managing proj-
ects on the site and split our interviews
along two dimensions: hobbyists and
software developers coding on open

source projects as part of their job, and
managers of large and small projects.
(Details of our research methods ap-
pear elsewhere.8)

In our interviews, we asked devel-
opers to walk us through their last
GitHub session. Our goal was to get
an idea of how they managed and con-
tributed to projects and how they used
the social functionality such as review-
ing their feeds, watching projects, and
following other users. We analyzed the
results by looking in our data for com-
mon themes around inferences that us-
ers made, based on activity cues visible
to them. Our results revealed that the
transparent environment supported an
effective set of coordination behaviors.

What You Can See in a
Transparent Environment
Table 1 summarizes the cues and some
of the primary inferences users were
able to make based on those cues. For
example, recency and volume of activ-
ity was generally an indicator of live-
ness. As with many open source host-
ing sites, abandoned projects greatly
outnumber vibrant ones to which peo-
ple continue to contribute and pay at-
tention. Yet, developers must often
compare and evaluate projects—for
example, which syntax highlighting li-
brary do I choose? A search shows 158

possibilities. It can be tedious to evalu-
ate them all, and you want to avoid de-
pending on a dead or dying project. In
GitHub, developers described getting
a sense of how live or active a project
was by the number of commit events in
the feed. Once participant said, “Com-
mit activity in the feeds shows that the
project is alive, that people are still
adding code.”

Visible cues about whether someone
was attending to something served as
an important signal of community sup-
port. Developers interpreted activity
traces of attention (following, watch-
ing, and commenting) as an indicator
that the community cared about that
person, project, or action. Visible infor-
mation about community interest in the
form of watcher and fork counts for a
project was an important indicator of a
project’s quality and value. Several re-
spondents indicated that they use the
number of watchers or forks as a signal
that a project had community interest,
which helps them assess how likely it is
to be good or interesting. As one devel-
oper put it, “The way you know how
useful something is, is how much com-
munity there is behind it.”

How Transparency Affects
the Way Work Is Done
The social inferences that developers

Ta
b

l
e

 1 Cues and inferences in GitHub.

Visible cues Social inferences Representative quote

Recency and volume of activity Interest and level of commitment “This guy on Mongoid is just … a machine, he just keeps cranking out code.”

Sequence of actions over time Intention behind action “Commits tell a story. Convey direction you are trying to go with the code …
revealing what you want to do.”

Attention to artifacts and people Importance to community “The number of people watching a project or people interested in the project
obviously [means] it’s a better project than something that has no one else
interested in it.”

Detailed information about an
action

Personal relevance and impact “If there was something [in the feed] that would preclude a feature [then] I
would want it would give me a chance to add input to it.”

Webpage security.polito.it/tc/tpa trousers.sourceforge.net

s1her.indd 38 12/12/12 1:56 PM

 January/February 2013 | Ieee SoFtware 39

made based on visible cues of oth-
ers’ behaviors supported three types
of higher-level collaborative activities:
project management, lessons from ob-
servation, and reputation management.

Project Management
All the developers we interviewed had
GitHub projects for which they were
primarily responsible. Certain types of
social inferences (such as those in Ta-
ble 1) supported project management
activities.

Recruiting developers. Several of our
respondents actively recruited others
to contribute to their projects. Because
forking and experimentation generally
take place in public, recruitment is of-
ten fueled by information that would
be invisible if this work happened in a
local environment, visible only to the
developer working on a private copy of
the code. One user watched commits in
the various forks of his project to iden-
tify skilled and committed developers.
Another user, a newer GitHub member,
was recruited by a project owner after
submitting several good commits. The
project owner began sending him tasks
such as requests to address incoming
issues. Intense interest in the project,
inferred from a high volume of com-
mit actions in a short period of time,
sent a strong signal that a contributor
was invested in the project and could
be trusted to contribute more centrally.
Owners grant commit rights to these
interested contributors, allow new
members to infl uence project vision,
and sometimes even turn over owner-
ship to newcomers.

Identifying user needs. Transparency
also helped identify user needs by
watching activity in project forks (see
Figure 1). For example, one developer
said he was aware that users were fork-
ing his project to fi x incompatibilities
with another piece of software. Based

on their activity in the forks, it became
clear which incompatibility issues were
particularly problematic for his users: “I
saw somebody trying to use [a piece of
code] with Rails master. I’m like, ‘Well,
crap I don’t know if it works with Rails
master so let me check.’ So that type of
stuff has been useful just to get a sense
of the kinds of things people might like
to see.” In almost all cases, these user
modifi cations represented innovations
that extended the project in interesting
ways, making it compatible with other
systems or more useful in general.

Managing incoming code contributions.
Perhaps the most important project
management activity developers engaged
in was managing incoming code con-
tributions. As we’ve already noted, us-
ers and other developers could submit
changes to a project by forking the proj-
ect, changing the fork, and then making
a pull request (requesting that changes be
merged back into the repository owner’s
branch). Owners were constantly mak-
ing decisions about what code to accept.

For very large and popular projects,
owners dealt with many pull requests
per day. They made inferences about the
quality of a code contribution based on
its style, effi ciency, thoroughness (for ex-
ample, was testing included?), and the
submitter’s track record.

Visibility across project forks took
the pressure off project owners to accept
all changes and allowed niche versions
of a project to coexist with the offi cial
release. Thus, contributors could build
directly on each other’s work, even if
the project owner didn’t approve the
changes. One developer said, “I can ig-
nore bad changes but know that the net-
work of experimenters can continue.”

The cross-fork visibility also meant
that project owners could proactively
solicit changes from developers as they
were working in forks and could track
the status of ongoing changes. Several
respondents indicated that they used
the network view to identify the lead-
ing wave of changes to their project;
it helped them see what people were
trying to do. One participant said, “I

FigUre 1. GitHub network graph of the KGNoise project (https://github.com/kgn/KGNoise).

Each line represents a fork, dots are commits, and tags are labeled versions. Vertical lines

represent forking and merging.

s1her.indd 39 12/12/12 1:56 PM

40	 IEEE Software | www.computer.org/software

FOCUS: Social Networking

would look at this [network] view and
actually find folks who had uploaded a
patch and say, ‘Hey, are you planning
on sending that back to [my project]?
This is what I think of it; here are some

changes you could make, here are some
suggestions,’ and that kind of got the
ball rolling.”

In some cases, the changes wouldn’t
be submitted back because the person
making the changes didn’t finish doing
what he or she had intended. Here, re-
spondents said they would ping the de-
veloper to solicit a pull request or ask
when the developer would finish. In
some cases, if the change was incom-
plete but novel or useful enough, the
project owner would take over and per-
sonally finish it.

In many cases, project owners
needed to directly communicate about
a code contribution. Sometimes, this
was an attempt to solicit and motivate
changes we’ve already described here.
More often, however, this interaction
consisted of negotiation around incom-
ing pull requests. Project owners had
a view of the project trajectory, and
there was a need for others to buy in
before making changes. Project owners
would often see potential problems that
a code submission could cause with
other parts of the code or with changes
they wanted to make in the future. In
both cases, the reaction was based on
implicit knowledge about code organi-
zation or on the vision for the project.
One respondent said, “I could tell [one
code submission] was actually going
to cause some serious problems down
the road, so I just responded. I always

thank them because it’s a big help when
people contribute back; however, it
wouldn’t work, so I kind of explained
to him why it didn’t work.”

The project vision and subtle code

interactions were often not visible to
submitters and required direct commu-
nication around the code. Similarly, the
submitter’s reasoning behind a change
or the organization of a code submis-
sion was not always clear to the project
owner. In some cases, several rounds of
comments around a pull request were
required to establish shared under-
standing of what the submitter was try-
ing to accomplish. Fully understanding
intentions and rationale was sometimes
difficult through transparency alone.

Managing dependencies with other proj-

ects. Cross-project visibility allowed
project owners to proactively manage
dependencies their code had with other
projects. Project owners were usually
“users” of others’ code, meaning that
changes to those projects could af-
fect the functioning of their own proj-
ect. Accordingly, they closely watched
change events from projects on which
they were dependent; they watched
for commit events in the feed and paid
special attention to new releases and
changes to files that their project used.
One participant said, “[A popular web-
site’s] entire engineering team uses [my
project], and so they keep an eye out for
any changes as well, because when I do
a release, [if] it breaks something then I
essentially broke [the popular website]’s
entire development for a day or some-
thing.” In some cases, project owners

would watch for changes they knew
were coming because they had heard
about them in other forums (mailing
lists, blogs, and so on) or had discussed
them with project owners or other
developers.

When changes occurred that af-
fected their code, developers often con-
tacted the project owner or contributor
who had made the change or joined a
discussion about a proposed change
For example, one project owner showed
us a case where a third party chimed in
on the discussion around a pull request
someone else had submitted because he
could tell the change affected function-
ality on which his company depended.

Developers would also handle con-
flicting or problematic changes by di-
rectly modifying the dependent project
to address the problem. Transparency
supported this behavior because the
dependent project’s code was open and
accessible. The visibility of changes al-
lowed the project owner to discover
why something was no longer working.
After making the change in a branch,
the developer had to lobby and negoti-
ate with the dependent project owner to
get his or her changes accepted into the
owner’s branch.

Lessons from Observation
Transparency on GitHub allowed users
to learn from other developers’ actions
by watching how other people coded,
what others paid attention to, and how
experts solved problems.

Following rock stars. Developers in our
sample said they followed particu-
lar developers’ actions because they
deemed those developers particularly
good at coding. They often referred to
those developers with thousands of fol-
lowers as “coding rock stars” and re-
ported interest in how they coded and
what projects they worked on. They be-
lieved their large followings often sig-
naled exceptional skill and knowledge.

Fully understanding intentions
and rationale was sometimes difficult

through transparency alone.

s1her.indd 40 12/12/12 1:56 PM

	 January/February 2013 | IEEE Software � 41

Watching watching. Developers were also
interested in which projects other users
were looking at; they said certain users
acted as curators of the project space. As
one developer put it, “I follow people if
they work on interesting projects; [then]
I’m interested in the projects they’re in-
terested in.” Certain developers seemed
to have a knack for finding useful proj-
ects in a particular interest area: “This
guy has good taste in projects. …
Watching him is like watching the best
of objective C that GitHub has to offer.”

This interest in finding the hot-
test new projects through what others
were watching highlighted the impor-
tance that users seem to place on nov-
elty: “I learn about new projects and
new technologies way faster than ever
before and it’s encouraged me to get
dialed in to a bunch of different tech
communities I never would have had
access to before.”

Identifying new technical knowledge. De-
velopers were also interested in watch-
ing other developers’ actions and proj-
ects to find new technical knowledge,
for example, to see how other develop-
ers had solved problems similar to theirs
and how such solutions evolved: “When
I find a project that solves a problem
that I had and I’m going to continue to
have, then I will watch it.” By watching
these projects and seeing the changes as
they happened, users learned how their
technical “neighbors” were approach-
ing related problems, informing their
own development.

Receiving direct feedback. Developers
also learned from others through direct
interaction: through comments on pull
requests, developers got feedback about
their code from more experienced devel-
opers about correctness, good form, and
coding style. These interactions helped
improve the code submissions’ quality.

Communication also supported
learning about another developer’s

project and getting help with attempts
to build on that project. Some devel-
opers were extremely forthcoming
with this type of help, checking their
IRC channels and constantly issuing
requests to find and address those in
need. For some, this was an opportu-
nity to grow a potential contributor,
and project owners saw this as a pro-
cess of ramping up users to eventually
become full-fledged contributors.

Reputation Management
Actions’ public visibility on GitHub led
to identity management activities that
centered on developers gaining greater
attention and visibility for themselves
and their work.

Visibility and self-promotion. Our re-
spondents recognized the visibility of
work as a valuable aspect of the com-
munity. The developers we interviewed
noted the positive value of visibility,
which often led to increased use of a
project, extension by others, ideas from
a broader audience, and exposure for
the owner’s other projects.

At the same time, most develop-
ers considered self-promotion (active
attempts to gain additional visibil-
ity for work) as somewhat distasteful

and something developers shouldn’t
do. Despite this collective opinion,
many developers consciously managed
their self-image to promote their work
through consistent branding (for ex-
ample, by giving their project and blog
the same name or using the same Twit-
ter handle and GitHub user ID) and
by publicizing their work on platforms

outside of GitHub. One user noted, “I
think a lot of people that use GitHub
are trying to promote themselves.… It’s
like, ‘I have this project; you will be in-
terested in it.’”

Some of the developers we talked to
did find the attention associated with
self-promotion motivating. One de-
veloper noted that watchers kept him
working on something he might have
otherwise abandoned: “Watching lets
me know someone cares.”

Being onstage. Many GitHub users have
a clear awareness of the audience for
their actions. This awareness influences
how they behave and construct their
actions—for example, making changes
less frequently because they know that
“everyone is watching” and could “see
my changes as soon as I make them.”
One developer contrasted his heavily
watched project with a niche project,
saying that he could be more experi-
mental with a niche project because no
one was watching. Another developer
directly compared it with the pressure
of performing: “I try and make sure my
commit messages are snappy and my
code is clean because I know that a lot
of people are watching.… It’s like being
on stage: you don’t want to mess up,

you’re giving it your best, you’ve got
your Hollywood smile.”

Being onstage also affected how de-
velopers behaved toward other commu-
nity members. Developers didn’t want
to offend others, for example, by pub-
licly rejecting code contributions from
long-time contributors or not following
someone who followed them.

Some of the developers we talked
to did find the attention associated

with self-promotion motivating.

s1her.indd 41 12/12/12 1:56 PM

42	 IEEE Software | www.computer.org/software

FOCUS: Social Networking

Solving Communication
and Coordination Problems
Our findings suggest that transparency
can make substantial inroads on three
difficult communication and coordina-
tion problems in large-scale software
engineering: catching potential prob-
lems early, getting a handle on high
communication volumes, and knowing
what needs attention.

Visibility across Micro Supply Chains
Because all artifacts are visible on
the hosting site, users of a particular
project can access its contents and are
made continuously aware of project
changes. This awareness and visibility
support direct feedback and interac-
tion between project owners and their
users—what we call a micro supply
chain. Visibility between the supplier
(project owner) and consumer (user)
means that owners can more clearly
infer who their user base is, how
they are using the project, and when
they are having problems. Consum-
ers are notified about changes to the
product, meaning they can anticipate
problematic modifications and pro-
vide immediate feedback about them.
Once notified, consumers can directly
communicate with the project owner
about changes and discuss their con-
sequences or request adaptations that

would suit their needs. They can also
directly modify the product and cus-
tomize it to suit their needs with or
without direct communication, if they
so desire. What emerges is a highly
interactive producer-consumer rela-
tionship, characterized by reciprocal

dependencies. We found that trans-
parency allows projects to evolve and
become more general as a function of
micro supply-chain management. Al-
though a definitive answer awaits fur-
ther research, transparency could pro-
vide significant leverage for the thorny
problem of integration.

Communication when
Transparency Breaks Down
If you can see something directly, and
even modify and experiment with it,
there’s much less need for routine tech-
nical communication. When we asked
developers about communication with
other developers, most of these inter-
actions seemed to occur when conflicts
arose between two dependent projects
or when owners and contributors were
negotiating modifications to pull re-
quests. In each case, communication
seemed to happen when transparency
broke down—developers needed in-
formation that they couldn’t directly
observe. When communication was re-
quired, they accomplished it through a
variety of channels, including GitHub
comments, IRC channels, Campfire,
mailing lists, and so on.

Thus, although passive activity
traces of others’ behavior are power-
ful, they’re limited when joint action is
required. In part, this is owing to the

lack of feedback or interactivity these
visible traces provide. Our results sug-
gest these traces support rich inferences
about individuals and repositories.
However, when new collaborative ac-
tions involve dependencies, two-way
communication is required.

Signals of Attention
Visible signals of attention provided
notification of other developers’ behav-
ior and seemed to help users manage
the downsides of transparency across a
large-scale network. They helped devel-
opers identify projects and events they
found interesting or useful. These sig-
nals, when aggregated, also gave some
users higher levels of status because
they indicated community approval or
admiration. As one user put it, by vis-
ibly watching a repository, “I’m kind
of giving them some token of my atten-
tion. I’m saying, ‘I like what you’re do-
ing.’” Signals of attention functioned to
provide awareness of what other users
cared about or were looking at.9

A s powerful and useful as
transparency seems to be, it’s
certainly not a cure for all ills.

In our study, developers still reported
problems with information overload,
especially if they watched several very
active repositories or followed many ac-
tive people. Feeds with updates about
interest networks are powerful, but
these too can be swamped when proj-
ects grow large enough or a developer
wants to monitor many projects and
users.

It’s also clear from our interviews
that not everyone is comfortable living
onstage all the time. Moreover, the level
of discomfort is almost certainly un-
derrepresented in our sample, because
all of our interviewees had voluntarily
moved to a transparent environment.

Based on our observations, develop-
ers and development managers can take
several steps to fully leverage transpar-
ent environments:

•	 Companies can recommend partic-
ular developers to follow as exem-
plars of sound practice and style.

•	 New developers can receive a
planned program of “asynchronous

Transparency could provide
significant leverage for the thorny

problem of integration.

s1her.indd 42 12/12/12 1:56 PM

 January/February 2013 | Ieee SoFtware 43

mentoring,” exposing them to criti-
cal skills through recommendations
of repositories to watch and people
to follow.

•	 Assigned mentors can follow new
developers, providing a lightweight
way to advise and encourage.

•	 Developers must take extra care
to explicitly document the ratio-
nale for a change and vision for a
project, which aren’t always readily
apparent.

•	 Development organizations can co-
ordinate watching and following re-
lations with product road-mapping
activities so that evolving depen-
dencies are carefully attended to.

Modularity and information hid-
ing—revolutionary ideas in their time—
remain, decades later, among the most
signifi cant conceptual tools we have
for coordinating development work.
Although the evidence isn’t yet all in,
it seems to us that the complementary
idea of transparency could rank among
the breakthroughs of our day.

Acknowledgments
We gratefully acknowledge support from
NSF grants IIS-1111750, SMA-1064209,
OCI-0943168, and CNS-1040801 and grants
to Dabbish and Herbsleb from the Center for
the Future of Work, Heinz College, Carnegie
Mellon University.

references
 1. D.L. Parnas, “On the Criteria to be Used in

Decomposing Systems into Modules,” Comm.
ACM, vol. 15, no. 12, 1972, pp. 1053-1058.

 2. C.R.N. de Souza et al., “Sometimes You
Need to See through Walls: A Field Study of
Application Programming Interfaces,” Proc.
ACM Conf. Computer-Supported Coopera-
tive Work, ACM, 2004, pp. 63–72.

 3. R.E. Grinter, “Recomposition: Putting It All
Back Together Again,” Proc. ACM Conf.
Computer Supported Cooperative Work,
ACM, 1998, pp. 393–402.

 4. A. Sarma, Z. Noroozi, and A. van der Hoek,
“Palantír: Raising Awareness among Con-
fi guration Management Workspaces,” Proc.

Int’l Conf. Software Eng., IEEE CS, 2003, pp.
444–454.

 5. Y. Brun et al., “Proactive Detection of Col-
laboration Confl icts,” Proc. ACM Conf.
Foundations of Software Eng., ACM, 2011,
pp. 168–178.

 6. C. Gutwin, R. Penner, and K. Schneider,
“Group Awareness in Distributed Software
Development,” Proc. ACM Conf. Computer-
Supported Cooperative Work, ACM, 2004,
pp. 72–81.

 7. A. Parker, S.P. Borgatti, and R. Cross, “Mak-
ing Invisible Work Visible: Using Social Net-
work Analysis to Support Strategic Collabora-
tion,” California Management Rev., vol. 44,
no. 2, 2002, pp. 25–46.

 8. L. Dabbish et al., “Social Coding in GitHub:
Transparency and Collaboration in an Open
Software Repository,” Proc. ACM Conf.

Computer-Supported Cooperative Work,
ACM, 2012, pp. 1277–1286.

 9. T. Erickson and W.A. Kellogg, “Social Trans-
lucence: An Approach to Designing Systems
that Support Social Processes,” ACM Trans.
Computer-Human Interaction, vol. 7, no. 1,
2000, pp. 59–83.

LAUrA DABBiSH is an assistant professor of Information Technology
and Organizations at the H. John Heinz III College and the Human-
Computer Interaction Institute in the School of Computer Science at
Carnegie Mellon University. Her research interests include new forms
of technology-mediated organizations, social technology design, and
awareness and coordination in knowledge-intensive work. Dabbish
received a PhD in human-computer interaction from Carnegie Mellon
University. Contact her at dabbish@cmu.edu

CoLLeen StUArt is a postdoctoral Fellow in the Human-Computer
Interaction Institute at Carnegie Mellon University. Her research
interests include how social relationships and digital transparency
infl uences collaborative work. Stuart received a PhD in organizational
behavior from the University of Toronto. Contact her at hcstuart@
cs.cmu.edu.

JASon tSAY is a PhD candidate in software engineering with the
Institute for Software Research at Carnegie Mellon University. His re-
search interests include software–developer collaboration and develop-
ment environments. Tsay received a BS in computer engineering from
the University of Texas at Austin. Contact him at jtsay@cs.cmu.edu.

JAMeS HerBSLeB is a professor in the Institute for Software
Research, School of Computer Science, and the Center for the Future of
Work, Heinz College, Carnegie Mellon University. His research interests
include collaboration and coordination in large-scale software engi-
neering, particularly in the context of sociotechnical ecosystems. Herb-
sleb received a PhD in psychology and a JD in law from the University
of Nebraska. He’s a member of ACM. Contact him at jdh@cs.cmu.edu.

a
b

o
U

t
 t

H
e

 a
U

t
H

o
r

S

See www.computer.org/software
-multimedia for multimedia
content related to this article.

See www.computer.org/software
-multimedia for multimedia
content related to this article.

s1her.indd 43 12/12/12 1:56 PM

